O devátém Hilbertově problému
Nous développons une nouvelle stratégie pour comprendre la nature des obstructions aux déformations d’une représentation galoisienne globale réductible, impaire de dimension 2. Ces obstructions s’interprètent en termes de groupe de Šafarevič. D’après [BöMé], elles sont reliées à des conjecture arithmétiques classiques (Conjecture de Vandiver, conjecture de Greenberg). Dans cet article, nous introduisons un autre groupe de Šafarevič associé au corps fixe par . Nous comparons les deux groupes...
For a number field , let denote its Hilbert -class field, and put . We will determine all imaginary quadratic number fields such that is abelian or metacyclic, and we will give in terms of generators and relations.
For a finite group G let 𝒦₂(G) denote the set of normal number fields (within ℂ) with Galois group G which are 2-ramified, that is, unramified outside {2,∞}. We describe the 2-groups G for which 𝒦₂(G) ≠ ∅, and determine the fields in 𝒦₂(G) for certain distinguished 2-groups G appearing (dihedral, semidihedral, modular and semimodular groups). Our approach is based on Fröhlich's theory of central field extensions, and makes use of ring class field constructions (complex multiplication).