Tamagawa numbers for motives with (non-commutative) coefficients.
Let be the Jacobian of the modular curve associated with and the one associated with . We study as a Hecke and Galois-module. We relate a certain matrix of -adic periods to the infinitesimal deformation of the -operator.
Tate sequences play a major role in modern algebraic number theory. The extension class of a Tate sequence is a very subtle invariant which comes from class field theory and is hard to grasp. In this short paper we demonstrate that one can extract information from a Tate sequence without knowing the extension class in two particular situations. For certain totally real fields K we will find lower bounds for the rank of the ℓ-part of the class group Cl(K), and for certain CM fields we will find lower...
1. Introduction. Let F be a number field and the ring of its integers. Many results are known about the group , the tame kernel of F. In particular, many authors have investigated the 2-Sylow subgroup of . As compared with real quadratic fields, the 2-Sylow subgroups of for imaginary quadratic fields F are more difficult to deal with. The objective of this paper is to prove a few theorems on the structure of the 2-Sylow subgroups of for imaginary quadratic fields F. In our Ph.D. thesis (see...