Displaying 101 – 120 of 140

Showing per page

Théorie de Fontaine en égales caractéristiques

Alain Genestier, Vincent Lafforgue (2011)

Annales scientifiques de l'École Normale Supérieure

Les chtoucas locaux sont des analogues en égales caractéristiques des groupes p -divisibles — par exemple on leur associe un module de Tate, qui est un module libre sur l’anneau d’entiers d’un corps local K de caractéristique positive. Nous associons à un chtouca local une structure de Hodge (ou, plus précisément, une structure de Hodge-Pink), ce qui induit un morphisme de périodes analogue à celui construit par Rapoport et Zink. Pour les structures de Hodge-Pink définies sur une extension finie...

Towards explicit description of ramification filtration in the 2-dimensional case

Victor Abrashkin (2004)

Journal de Théorie des Nombres de Bordeaux

The principal result of this paper is an explicit description of the structure of ramification subgroups of the Galois group of 2-dimensional local field modulo its subgroup of commutators of order 3 . This result plays a clue role in the author’s proof of an analogue of the Grothendieck Conjecture for higher dimensional local fields, cf. Proc. Steklov Math. Institute, vol.  241, 2003, pp.  2-34.

Une construction de

Pierre Colmez (2012)

Rendiconti del Seminario Matematico della Università di Padova

Wintenberger’s functor for abelian extensions

Kevin Keating (2009)

Journal de Théorie des Nombres de Bordeaux

Let k be a finite field. Wintenberger used the field of norms to give an equivalence between a category whose objects are totally ramified abelian p -adic Lie extensions E / F , where F is a local field with residue field k , and a category whose objects are pairs ( K , A ) , where K k ( ( T ) ) and A is an abelian p -adic Lie subgroup of Aut k ( K ) . In this paper we extend this equivalence to allow Gal ( E / F ) and A to be arbitrary abelian pro- p groups.

Currently displaying 101 – 120 of 140