On multiple interpolation functions of the Nörlund-type -Euler polynomials.
In this paper we study certain moduli spaces of Barsotti-Tate groups constructed by Rapoport and Zink as local analogues of Shimura varieties. More precisely, given an isogeny class of Barsotti-Tate groups with unramified additional structures, we investigate how the associated (non-basic) moduli spaces compare to the (basic) moduli spaces associated with its isoclinic constituents. This aspect of the geometry of the Rapoport-Zink spaces is closely related to Kottwitz’s prediction that their -adic...
Let be the Rankin product -function for two Hilbert cusp forms and . This -function is in fact the standard -function of an automorphic representation of the algebraic group defined over a totally real field. Under the ordinarity assumption at a given prime for and , we shall construct a -adic analytic function of several variables which interpolates the algebraic part of for critical integers , regarding all the ingredients , and as variables.
Let be a valued field, where is a rank one discrete valuation. Let be its ring of valuation, its maximal ideal, and an extension of , defined by a monic irreducible polynomial . Assume that factors as a product of distinct powers of monic irreducible polynomials. In this paper a condition which guarantees the existence of exactly distinct valuations of extending is given, in such a way that it generalizes the results given in the paper “Prolongations of valuations to finite...
Let p be an odd prime and let a be a positive integer. In this paper we investigate the sum , where h and m are p-adic integers with m ≢ 0 (mod p). For example, we show that if h ≢ 0 (mod p) and , then , where (·/·) denotes the Jacobi symbol. Here is another remarkable congruence: If then .