A certain property of polynomials.
Let K be a unique factorization domain of characteristic p > 0, and let f ∈ K[x₁,...,xₙ] be a polynomial not lying in . We prove that is the ring of constants of a K-derivation of K[x₁,...,xₙ] if and only if all the partial derivatives of f are relatively prime. The proof is based on a generalization of Freudenburg’s lemma to the case of polynomials over a unique factorization domain of arbitrary characteristic.
The paper presents a simple method to check a positiveness of symmetric multivariate polynomials on the unit multi-circle. The method is based on the sampling polynomials using the fast Fourier transform. The algorithm is described and its possible applications are proposed. One of the aims of the paper is to show that presented algorithm is significantly faster than commonly used method based on the semi-definite programming expression.