Displaying 321 – 340 of 2022

Showing per page

Conjugacy classes of series in positive characteristic and Witt vectors.

Sandrine Jean (2009)

Journal de Théorie des Nombres de Bordeaux

Let k be the algebraic closure of 𝔽 p and K be the local field of formal power series with coefficients in k . The aim of this paper is the description of the set 𝒴 n of conjugacy classes of series of order p n for the composition law. This work is concerned with the formal power series with coefficients in a field of characteristic p which are invertible and of finite order p n for the composition law. In order to investigate Oort’s conjecture, I give a description of conjugacy classes of series by means...

Constructing ω-stable structures: Computing rank

John T. Baldwin, Kitty Holland (2001)

Fundamenta Mathematicae

This is a sequel to [1]. Here we give careful attention to the difficulties of calculating Morley and U-rank of the infinite rank ω-stable theories constructed by variants of Hrushovski's methods. Sample result: For every k < ω, there is an ω-stable expansion of any algebraically closed field which has Morley rank ω × k. We include a corrected proof of the lemma in [1] establishing that the generic model is ω-saturated in the rank 2 case.

Currently displaying 321 – 340 of 2022