From p-rigid elements to valuations (with a Galois-characterization of p-adic fields).
This paper contains an application of Langlands’ functoriality principle to the following classical problem: which finite groups, in particular which simple groups appear as Galois groups over ? Let be a prime and a positive integer. We show that that the finite simple groups of Lie type if and appear as Galois groups over , for some divisible by . In particular, for each of the two Lie types and fixed we construct infinitely many Galois groups but we do not have a precise control...