The search session has expired. Please query the service again.
We construct and study length 2 variables of A[x,y] (A is a commutative ring). If A is an integral domain, we determine among these variables those which are tame. If A is a UFD, we prove that these variables are all stably tame. We apply this construction to show that some polynomials of A[x₁,...,xₙ] are variables using transfer.
Dans cet article, nous définissons une catégorie des motifs sur une catégorie monoïdale symétrique vérifiant certaines hypothèses. Le rôle des espaces sur est joué par les monoïdes (non necessairement commutatifs) dans . Pour définir les morphismes dans , nous utilisons des classes dans les groupes d’homologie cyclique bivariante. Le but est de montrer que les opérateurs de périodicité de Connes induisent des morphismes dans , où est le motif de Tate dans .
To every morphism of differential graded Lie algebras we associate a functors of artin rings whose tangent and obstruction spaces are respectively the first and second cohomology group of the suspension of the mapping cone of .
Such construction applies to Hilbert and Brill-Noether functors and allow to prove with ease that every higher obstruction to deforming a smooth submanifold of a Kähler manifold is annihilated by the semiregularity map.
We study liftings or deformations of -modules ( is the ring of differential operators from EGA IV) from positive characteristic to characteristic zero using ideas of Matzat and Berthelot’s theory of arithmetic -modules. We pay special attention to the growth of the differential Galois group of the liftings. We also apply formal deformation theory (following Schlessinger and Mazur) to analyze the space of all liftings of a given -module in positive characteristic. At the end we compare the problems...
In this note we generalize some results from finite fields to Galois rings which are finite extensions of the ring Zpm of integers modulo pm where p is a prime and m ≥ 1.
Let be a finite extension of . The field of norms of a -adic Lie extension is a local field of characteristic which comes equipped with an action of . When can we lift this action to characteristic , along with a compatible Frobenius map? In this note, we formulate precisely this question, explain its relevance to the theory of -modules, and give a condition for the existence of certain types of lifts.
Let k be a field. We describe all linear derivations d of the polynomial algebra k[x₁,...,xₘ] such that the algebra of constants with respect to d is generated by linear forms: (a) over k in the case of char k = 0, (b) over in the case of char k = p > 0.
Currently displaying 21 –
40 of
76