Displaying 61 – 80 of 2839

Showing per page

A generalization of semiflows on monomials

Hamid Kulosman, Alica Miller (2012)

Mathematica Bohemica

Let K be a field, A = K [ X 1 , , X n ] and 𝕄 the set of monomials of A . It is well known that the set of monomial ideals of A is in a bijective correspondence with the set of all subsemiflows of the 𝕄 -semiflow 𝕄 . We generalize this to the case of term ideals of A = R [ X 1 , , X n ] , where R is a commutative Noetherian ring. A term ideal of A is an ideal of A generated by a family of terms c X 1 μ 1 X n μ n , where c R and μ 1 , , μ n are integers 0 .

A generalization of the Auslander transpose and the generalized Gorenstein dimension

Yuxian Geng (2013)

Czechoslovak Mathematical Journal

Let R be a left and right Noetherian ring and C a semidualizing R -bimodule. We introduce a transpose Tr c M of an R -module M with respect to C which unifies the Auslander transpose and Huang’s transpose, see Z. Y. Huang, On a generalization of the Auslander-Bridger transpose, Comm. Algebra 27 (1999), 5791–5812, in the two-sided Noetherian setting, and use Tr c M to develop further the generalized Gorenstein dimension with respect to C . Especially, we generalize the Auslander-Bridger formula to the generalized...

A generalization of the finiteness problem of the local cohomology modules

Ahmad Abbasi, Hajar Roshan-Shekalgourabi (2014)

Czechoslovak Mathematical Journal

Let R be a commutative Noetherian ring and 𝔞 an ideal of R . We introduce the concept of 𝔞 -weakly Laskerian R -modules, and we show that if M is an 𝔞 -weakly Laskerian R -module and s is a non-negative integer such that Ext R j ( R / 𝔞 , H 𝔞 i ( M ) ) is 𝔞 -weakly Laskerian for all i < s and all j , then for any 𝔞 -weakly Laskerian submodule X of H 𝔞 s ( M ) , the R -module Hom R ( R / 𝔞 , H 𝔞 s ( M ) / X ) is 𝔞 -weakly Laskerian. In particular, the set of associated primes of H 𝔞 s ( M ) / X is finite. As a consequence, it follows that if M is a finitely generated R -module and N is an 𝔞 -weakly...

A geometric approach to the Jacobian Conjecture in ℂ²

Ludwik M. Drużkowski (1991)

Annales Polonici Mathematici

We consider polynomial mappings (f,g) of ℂ² with constant nontrivial jacobian. Using the Riemann-Hurwitz relation we prove among other things the following: If g - c (resp. f - c) has at most two branches at infinity for infinitely many numbers c or if f (resp. g) is proper on the level set g - 1 ( 0 ) (resp. f - 1 ( 0 ) ), then (f,g) is bijective.

A Geometrical Construction for the Polynomial Invariants of some Reflection Groups

Sarti, Alessandra (2005)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: Primary 20F55, 13F20; Secondary 14L30.We construct invariant polynomials for the reflection groups [3, 4, 3] and [3, 3, 5] by using some special sets of lines on the quadric P1 × P1 in P3. Then we give a simple proof of the well known fact that the ring of invariants are rationally generated in degree 2,6,8,12 and 2,12,20,30.

A graph associated to proper non-small ideals of a commutative ring

S. Ebrahimi Atani, S. Dolati Pish Hesari, M. Khoramdel (2017)

Commentationes Mathematicae Universitatis Carolinae

In this paper, a new kind of graph on a commutative ring is introduced and investigated. Small intersection graph of a ring R , denoted by G ( R ) , is a graph with all non-small proper ideals of R as vertices and two distinct vertices I and J are adjacent if and only if I J is not small in R . In this article, some interrelation between the graph theoretic properties of this graph and some algebraic properties of rings are studied. We investigated the basic properties of the small intersection graph as diameter,...

A minimal Set of Generators for the Ring of multisymmetric Functions

David Rydh (2007)

Annales de l’institut Fourier

The purpose of this article is to give, for any (commutative) ring A , an explicit minimal set of generators for the ring of multisymmetric functions T S A d ( A [ x 1 , , x r ] ) = A [ x 1 , , x r ] A d 𝔖 d as an A -algebra. In characteristic zero, i.e. when A is a -algebra, a minimal set of generators has been known since the 19th century. A rather small generating set in the general case has also recently been given by Vaccarino but it is not minimal in general. We also give a sharp degree bound on the generators, improving the degree bound previously...

Currently displaying 61 – 80 of 2839