Algebraic number fields with the principal ideal condition
We classify all finitely generated integral algebras with a rational action of a reductive group such that any invariant subalgebra is finitely generated. Some results on affine embeddings of homogeneous spaces are also given.
This paper is a continuation of the investigation of almost Prüfer v-multiplication domains (APVMDs) begun by Li [Algebra Colloq., to appear]. We show that an integral domain D is an APVMD if and only if D is a locally APVMD and D is well behaved. We also prove that D is an APVMD if and only if the integral closure D̅ of D is a PVMD, D ⊆ D̅ is a root extension and D is t-linked under D̅. We introduce the notion of an almost t-splitting set. denotes the ring , where S is a multiplicatively closed...
In this paper we establish some new characterizations for -rings and Noetherian -rings.
In this paper we establish some conditions for an almost -domain to be a -domain. Next -lattices satisfying the union condition on primes are characterized. Using these results, some new characterizations are given for -rings.
This paper gives an algorithm for computing the kernel of a locally finite higher derivation on the polynomial ring k[x₁,..., xₙ] up to a given bound.
An algorithm is described which computes generators of the kernel of derivations on k[X₁,...,Xₙ] up to a previously given bound. For w-homogeneous derivations it is shown that if the algorithm computes a generating set for the kernel then this set is minimal.
It is known that the identifiability of multivariate mixtures reduces to a question in algebraic geometry. We solve the question by studying certain generators in the ring of polynomials in vector variables, invariant under the action of the symmetric group.
In this paper, we construct an object, called a system of approximate roots of a valuation, centered in a regular local ring, which describes the fine structure of the valuation (namely, its valuation ideals and the graded algebra). We apply this construction to valuations associated to a point of the real spectrum of a regular local ring . We give two versions of the construction: the first, much simpler, in a special case (roughly speaking, that of rank 1 valuations), the second – in the case...