Displaying 21 – 40 of 42

Showing per page

Component clusters for acyclic quivers

Sarah Scherotzke (2016)

Colloquium Mathematicae

The theory of Caldero-Chapoton algebras of Cerulli Irelli, Labardini-Fragoso and Schröer (2015) leads to a refinement of the notions of cluster variables and clusters, via so-called component clusters. We compare component clusters to classical clusters for the cluster algebra of an acyclic quiver. We propose a definition of mutation between component clusters and determine the mutation relations of component clusters for affine quivers. In the case of a wild quiver, we provide bounds for the size...

Component groups of abelian varieties and Grothendieck's duality conjecture

Siegfried Bosch (1997)

Annales de l'institut Fourier

We investigate Grothendieck’s pairing on component groups of abelian varieties from the viewpoint of rigid uniformization theory. Under the assumption that the pairing is perfect, we show that the filtrations, as introduced by Lorenzini and in a more general way by Bosch and Xarles, are dual to each other. Furthermore, the methods yield some progress on the perfectness of the pairing itself, in particular, for abelian varieties with potentially multiplicative reduction.

Computations with Witt vectors of length 3

Luís R. A. Finotti (2011)

Journal de Théorie des Nombres de Bordeaux

In this paper we describe how to perform computations with Witt vectors of length 3 in an efficient way and give a formula that allows us to compute the third coordinate of the Greenberg transform of a polynomial directly. We apply these results to obtain information on the third coordinate of the j -invariant of the canonical lifting as a function on the j -invariant of the ordinary elliptic curve in characteristic p .

Computing r -removed P -orderings and P -orderings of order h

Keith Johnson (2010)

Actes des rencontres du CIRM

We develop a recursive method for computing the r -removed P -orderings and P -orderings of order h , the characteristic sequences associated to these and limits associated to these sequences for subsets S of a Dedekind domain D . This method is applied to compute these objects for S = and S = p .

Conjugacy classes of series in positive characteristic and Witt vectors.

Sandrine Jean (2009)

Journal de Théorie des Nombres de Bordeaux

Let k be the algebraic closure of 𝔽 p and K be the local field of formal power series with coefficients in k . The aim of this paper is the description of the set 𝒴 n of conjugacy classes of series of order p n for the composition law. This work is concerned with the formal power series with coefficients in a field of characteristic p which are invertible and of finite order p n for the composition law. In order to investigate Oort’s conjecture, I give a description of conjugacy classes of series by means...

Construction of p o -groups with quasi-divisors theory

Jiří Močkoř (2000)

Czechoslovak Mathematical Journal

A method is presented making it possible to construct p o -groups with a strong theory of quasi-divisors of finite character and with some prescribed properties as subgroups of restricted Hahn groups H ( Δ , ) , where Δ are finitely atomic root systems. Some examples of these constructions are presented.

Convex-compact sets and Banach discs

I. Monterde, Vicente Montesinos (2009)

Czechoslovak Mathematical Journal

Every relatively convex-compact convex subset of a locally convex space is contained in a Banach disc. Moreover, an upper bound for the class of sets which are contained in a Banach disc is presented. If the topological dual E ' of a locally convex space E is the σ ( E ' , E ) -closure of the union of countably many σ ( E ' , E ) -relatively countably compacts sets, then every weakly (relatively) convex-compact set is weakly (relatively) compact.

Currently displaying 21 – 40 of 42