Displaying 521 – 540 of 816

Showing per page

On wsq-primary ideals

Emel Aslankarayiğit Uğurlu, El Mehdi Bouba, Ünsal Tekir, Suat Koç (2023)

Czechoslovak Mathematical Journal

We introduce weakly strongly quasi-primary (briefly, wsq-primary) ideals in commutative rings. Let R be a commutative ring with a nonzero identity and Q a proper ideal of R . The proper ideal Q is said to be a weakly strongly quasi-primary ideal if whenever 0 a b Q for some a , b R , then a 2 Q or b Q . Many examples and properties of wsq-primary ideals are given. Also, we characterize nonlocal Noetherian von Neumann regular rings, fields, nonlocal rings over which every proper ideal is wsq-primary, and zero dimensional...

Orderings of monomial ideals

Matthias Aschenbrenner, Wai Yan Pong (2004)

Fundamenta Mathematicae

We study the set of monomial ideals in a polynomial ring as an ordered set, with the ordering given by reverse inclusion. We give a short proof of the fact that every antichain of monomial ideals is finite. Then we investigate ordinal invariants for the complexity of this ordered set. In particular, we give an interpretation of the height function in terms of the Hilbert-Samuel polynomial, and we compute bounds on the maximal order type.

Ordres de Gorenstein

Martine Picavet-L'hermitte (1987)

Annales scientifiques de l'Université de Clermont. Mathématiques

Parametrization of integral values of polynomials

Giulio Peruginelli (2010)

Actes des rencontres du CIRM

We will recall a recent result about the classification of those polynomial in one variable with rational coefficients whose image over the integer is equal to the image of an integer coefficients polynomial in possibly many variables. These set is polynomially generated over the integers by a family of polynomials whose denominator is 2 and they have a symmetry with respect to a particular axis.We will also give a description of the linear factors of the bivariate separated polynomial f ( X ) - f ( Y ) over a...

Pólya fields and Pólya numbers

Amandine Leriche (2010)

Actes des rencontres du CIRM

A number field K , with ring of integers 𝒪 K , is said to be a Pólya field if the 𝒪 K -algebra formed by the integer-valued polynomials on 𝒪 K admits a regular basis. In a first part, we focus on fields with degree less than six which are Pólya fields. It is known that a field K is a Pólya field if certain characteristic ideals are principal. Analogously to the classical embedding problem, we consider the embedding of K in a Pólya field. We give a positive answer to this embedding problem by showing that...

Pólya fields, Pólya groups and Pólya extensions: a question of capitulation

Amandine Leriche (2011)

Journal de Théorie des Nombres de Bordeaux

A number field K , with ring of integers 𝒪 K , is said to be a Pólya field when the 𝒪 K -algebra formed by the integer-valued polynomials on 𝒪 K admits a regular basis. It is known that such fields are characterized by the fact that some characteristic ideals are principal. Analogously to the classical embedding problem in a number field with class number one, when K is not a Pólya field, we are interested in the embedding of K in a Pólya field. We study here two notions which can be considered as measures...

Polynômes de Barsky

Youssef Haouat, Fulvio Grazzini (1979)

Annales scientifiques de l'Université de Clermont. Mathématiques

Polynomial algebra of constants of the Lotka-Volterra system

Jean Moulin Ollagnier, Andrzej Nowicki (1999)

Colloquium Mathematicae

Let k be a field of characteristic zero. We describe the kernel of any quadratic homogeneous derivation d:k[x,y,z] → k[x,y,z] of the form d = x ( C y + z ) x + y ( A z + x ) y + z ( B x + y ) z , called the Lotka-Volterra derivation, where A,B,C ∈ k.

Polynomial cycles in certain local domains

T. Pezda (1994)

Acta Arithmetica

1. Let R be a domain and f ∈ R[X] a polynomial. A k-tuple x , x , . . . , x k - 1 of distinct elements of R is called a cycle of f if f ( x i ) = x i + 1 for i=0,1,...,k-2 and f ( x k - 1 ) = x . The number k is called the length of the cycle. A tuple is a cycle in R if it is a cycle for some f ∈ R[X]. It has been shown in [1] that if R is the ring of all algebraic integers in a finite extension K of the rationals, then the possible lengths of cycles of R-polynomials are bounded by the number 7 7 · 2 N , depending only on the degree N of K. In this note we consider...

Currently displaying 521 – 540 of 816