Displaying 41 – 60 of 110

Showing per page

A procedure to compute prime filtration

Asia Rauf (2010)

Open Mathematics

Let K be a field, S = K[x 1, … x n] be a polynomial ring in n variables over K and I ⊂ S be an ideal. We give a procedure to compute a prime filtration of S/I. We proceed as in the classical case by constructing an ascending chain of ideals of S starting from I and ending at S. The procedure of this paper is developed and has been implemented in the computer algebra system Singular.

A simple characterization of principal ideal domains

Clifford S. Queen (1993)

Acta Arithmetica

1. Introduction. In this note we give necessary and sufficient conditions for an integral domain to be a principal ideal domain. Curiously, these conditions are similar to those that characterize Euclidean domains. In Section 2 we establish notation, discuss related results and prove our theorem. Finally, in Section 3 we give two nontrivial applications to real quadratic number fields.

A simple proof of uniqueness for torsion modules over principal ideal domains.

J. L. García Roig (1985)

Stochastica

The aim of this note is to give an alternative proof of uniqueness for the decomposition of a finitely generated torsion module over a P.I.D. (= principal ideal domain) as a direct sum of indecomposable submodules.Our proof tries to mimic as far as we can the standard procedures used when dealing with vector spaces.For the sake of completeness we also include a proof of the existence theorem.

Absolutely S-domains and pseudo-polynomial rings

Noomen Jarboui, Ihsen Yengui (2002)

Colloquium Mathematicae

A domain R is called an absolutely S-domain (for short, AS-domain) if each domain T such that R ⊆ T ⊆ qf(R) is an S-domain. We show that R is an AS-domain if and only if for each valuation overring V of R and each height one prime ideal q of V, the extension R/(q ∩ R) ⊆ V/q is algebraic. A Noetherian domain R is an AS-domain if and only if dim (R) ≤ 1. In Section 2, we study a class of R-subalgebras of R[X] which share many spectral properties with the polynomial ring R[X] and which we call pseudo-polynomial...

Currently displaying 41 – 60 of 110