Displaying 61 – 80 of 110

Showing per page

AK-invariant, some conjectures, examples and counterexamples

L. Makar-Limanov (2001)

Annales Polonici Mathematici

In my talk I am going to remind you what is the AK-invariant and give examples of its usefulness. I shall also discuss basic conjectures about this invariant and some positive and negative results related to these conjectures.

Almost Prüfer v-multiplication domains and the ring D + X D S [ X ]

Qing Li (2010)

Colloquium Mathematicae

This paper is a continuation of the investigation of almost Prüfer v-multiplication domains (APVMDs) begun by Li [Algebra Colloq., to appear]. We show that an integral domain D is an APVMD if and only if D is a locally APVMD and D is well behaved. We also prove that D is an APVMD if and only if the integral closure D̅ of D is a PVMD, D ⊆ D̅ is a root extension and D is t-linked under D̅. We introduce the notion of an almost t-splitting set. D ( S ) denotes the ring D + X D S [ X ] , where S is a multiplicatively closed...

Almost Q -rings

C. Jayaram (2004)

Archivum Mathematicum

In this paper we establish some new characterizations for Q -rings and Noetherian Q -rings.

Almost-free E(R)-algebras and E(A,R)-modules

Rüdiger Göbel, Lutz Strüngmann (2001)

Fundamenta Mathematicae

Let R be a unital commutative ring and A a unital R-algebra. We introduce the category of E(A,R)-modules which is a natural extension of the category of E-modules. The properties of E(A,R)-modules are studied; in particular we consider the subclass of E(R)-algebras. This subclass is of special interest since it coincides with the class of E-rings in the case R = ℤ. Assuming diamond ⋄, almost-free E(R)-algebras of cardinality κ are constructed for any regular non-weakly compact cardinal κ > ℵ...

An algorithm for primary decomposition in polynomial rings over the integers

Gerhard Pfister, Afshan Sadiq, Stefan Steidel (2011)

Open Mathematics

We present an algorithm to compute a primary decomposition of an ideal in a polynomial ring over the integers. For this purpose we use algorithms for primary decomposition in polynomial rings over the rationals, resp. over finite fields, and the idea of Shimoyama-Yokoyama, resp. Eisenbud-Hunecke-Vasconcelos, to extract primary ideals from pseudo-primary ideals. A parallelized version of the algorithm is implemented in Singular. Examples and timings are given at the end of the article.

Currently displaying 61 – 80 of 110