Recognizing cluster algebras of finite type.
A weak basis of a module is a generating set of the module minimal with respect to inclusion. A module is said to be regularly weakly based provided that each of its generating sets contains a weak basis. We study (1) rings over which all modules are regularly weakly based, refining results of Nashier and Nichols, and (2) regularly weakly based modules over Dedekind domains.
We study the construction of new multiplication modules relative to a torsion theory . As a consequence, -finitely generated modules over a Dedekind domain are completely determined. We relate the relative multiplication modules to the distributive ones.
We show an explicit relation between the Chow form and the Grothendieck residue; and we clarify the role that the residue can play in the intersection theory besides its role in the division problem.
A ring extension is said to be FO if it has only finitely many intermediate rings. is said to be FC if each chain of distinct intermediate rings in this extension is finite. We establish several necessary and sufficient conditions for the ring extension to be FO or FC together with several other finiteness conditions on the set of intermediate rings. As a corollary we show that each integrally closed ring extension with finite length chains of intermediate rings is necessarily a normal pair...