MOP -- algorithmic modality analysis for parabolic actions.
We study the family of elliptic curves y² = x(x-a²)(x-b²) parametrized by Pythagorean triples (a,b,c). We prove that for a generic triple the lower bound of the rank of the Mordell-Weil group over ℚ is 1, and for some explicitly given infinite family the rank is 2. To each family we attach an elliptic surface fibered over the projective line. We show that the lower bounds for the rank are optimal, in the sense that for each generic fiber of such an elliptic surface its corresponding Mordell-Weil...
We generalize L. J. Mordell’s construction of cubic surfaces for which the Hasse principle fails.
On sait que les groupes de Chow d’une variété projective ne sont pas de type fini, et ne peuvent même être paramétrés par une variété algébrique, en général. Pourtant, S.-I. Kimura et P. O’Sullivan ont conjecturé (indépendamment l’un de l’autre) que les motifs de Chow, définis en termes de correspondances algébriques modulo l’équivalence rationnelle, sont de “dimension finie”au sens où, tout comme les super-fibrés vectoriels, ils sont somme d’un facteur dont une puissance extérieure est nulle et...