Displaying 21 – 40 of 252

Showing per page

3-folds of general type with K 3 = 4 p g - 14

Paola Supino (1999)

Bollettino dell'Unione Matematica Italiana

In questo lavoro vengono costruite famiglie di 3-folds algebriche e non singolari X di tipo generale tali che l'invariante K X 3 sia il minimo possibile rispetto al genere geometrico p g , quando si suppone che il morfismo canonico sia birazionale. Per tali 3-folds vale la relazione lineare K X 3 = 4 p g - 14 inoltre l'immagine del morfismo canonico é una varietà di Castelnuovo di P p g - 1 .

Łojasiewicz Exponent of Overdetermined Mappings

Stanisław Spodzieja, Anna Szlachcińska (2013)

Bulletin of the Polish Academy of Sciences. Mathematics

A mapping F : m is called overdetermined if m > n. We prove that the calculations of both the local and global Łojasiewicz exponent of a real overdetermined polynomial mapping F : m can be reduced to the case m = n.

Łojasiewicz exponent of the gradient near the fiber

Ha Huy Vui, Nguyen Hong Duc (2009)

Annales Polonici Mathematici

It is well-known that if r is a rational number from [-1,0), then there is no polynomial f in two complex variables and a fiber f - 1 ( t ) such that r is the Łojasiewicz exponent of grad(f) near the fiber f - 1 ( t ) . We show that this does not remain true if we consider polynomials in real variables. More exactly, we give examples showing that any rational number can be the Łojasiewicz exponent near the fiber of the gradient of some polynomial in real variables. The second main result of the paper is the formula...

Łojasiewicz exponents and singularities at infinity of polynomials in two complex variables

Janusz Gwoździewicz, Arkadiusz Płoski (2005)

Colloquium Mathematicae

For every polynomial F in two complex variables we define the Łojasiewicz exponents p , t ( F ) measuring the growth of the gradient ∇F on the branches centered at points p at infinity such that F approaches t along γ. We calculate the exponents p , t ( F ) in terms of the local invariants of singularities of the pencil of projective curves associated with F.

Łojasiewicz inequalities for sets definable in the structure exp

Ta Lê Loi (1995)

Annales de l'institut Fourier

We consider some variants of Łojasiewicz inequalities for the class of subsets of Euclidean spaces definable from addition, multiplication and exponentiation : Łojasiewicz-type inequalities, global Łojasiewicz inequalities with or without parameters. The rationality of Łojasiewicz’s exponents for this class is also proved.

[unknown]

Clément Dupont (0)

Annales de l’institut Fourier

[unknown]

Takato Uehara (0)

Annales de l’institut Fourier

[unknown]

Andrew R. Linshaw, Gerald W. Schwarz, Bailin Song (0)

Annales de l’institut Fourier

[unknown]

Indranil Biswas, Carlos Florentino (0)

Annales de l’institut Fourier

[unknown]

Xuhua He, Thomas Lam (0)

Annales de l’institut Fourier

[unknown]

Todor Milanov, Yefeng Shen (0)

Annales de l’institut Fourier

Currently displaying 21 – 40 of 252