Pseudo-elliptic integrals and the values of the Weierstrass -function at torsion points.
Let be a compact connected Kähler manifold equipped with an anti-holomorphic involution which is compatible with the Kähler structure. Let be a connected complex reductive affine algebraic group equipped with a real form . We define pseudo-real principal -bundles on . These are generalizations of real algebraic principal -bundles over a real algebraic variety. Next we define stable, semistable and polystable pseudo-real principal -bundles. Their relationships with the usual stable, semistable...
We present an effective and elementary method of determining the topological type of a cuspidal plane curve singularity with given local parametrization.
We study the pullback maps on cohomology groups for equivariant rational maps (i.e., monomial maps) on toric varieties. Our method is based on the intersection theory on toric varieties. We use the method to determine the dynamical degrees of monomial maps and compute the degrees of the Cremona involution.
Let be a field of characteristic . Let be a over (i.e., an -truncated Barsotti–Tate group over ). Let be a -scheme and let be a over . Let be the subscheme of which describes the locus where is locally for the fppf topology isomorphic to . If , we show that is pure in , i.e. the immersion is affine. For , we prove purity if satisfies a certain technical property depending only on its -torsion . For , we apply the developed techniques to show that all level ...