The six operations for sheaves on Artin stacks I: Finite coefficients
In this paper we develop a theory of Grothendieck’s six operations of lisse-étale constructible sheaves on Artin stacks locally of finite type over certain excellent schemes of finite Krull dimension. We also give generalizations of the classical base change theorems and Kunneth formula to stacks, and prove new results about cohomological descent for unbounded complexes.