A fixed point formula for varieties over finite fields.
Page 1 Next
William Fulton (1978)
Mathematica Scandinavica
Kai Köhler, Damien Roessler (2002)
Annales de l’institut Fourier
This is the second of a series of papers dealing with an analog in Arakelov geometry of the holomorphic Lefschetz fixed point formula. We use the main result of the first paper to prove a residue formula "à la Bott" for arithmetic characteristic classes living on arithmetic varieties acted upon by a diagonalisable torus; recent results of Bismut- Goette on the equivariant (Ray-Singer) analytic torsion play a key role in the proof.
Jürg Kramer (1991)
Compositio Mathematica
Domingo Toledo, Yue Lin L. Tong, Nigel R. O'Brian (1985)
Mathematische Annalen
Ragni Piene (1979)
Compositio Mathematica
François Petit (2013)
Bulletin de la Société Mathématique de France
Given a smooth proper dg algebra , a perfect dg -module and an endomorphism of , we define the Hochschild class of the pair with values in the Hochschild homology of the algebra . Our main result is a Riemann-Roch type formula involving the convolution of two such Hochschild classes.
Bloch, Spencer, Esnault, Hélène (2000)
Annals of Mathematics. Second Series
Shoji Yokura (1998)
Banach Center Publications
Rainer Weissauer (1986)
Mathematische Zeitschrift
Sinan Ünver (2004)
Journal de Théorie des Nombres de Bordeaux
We give an Arakelov theoretic proof of the equality of conductor and discriminant.
Henri Gillet, Christophe Soulé (1992)
Inventiones mathematicae
Henri Gillet, Damian Rössler, Christophe Soulé (2008)
Annales de l’institut Fourier
We prove an analog in Arakelov geometry of the Grothendieck-Riemann-Roch theorem.
G. Ellingsrud, K. Lonsted (1980)
Mathematische Annalen
Michel Brion, Michèle Vergne (1997)
Journal für die reine und angewandte Mathematik
Yum-Tong Siu (1985/1986)
Séminaire Bourbaki
Raimnund Blache (1996)
Mathematische Zeitschrift
J. Franke (1990)
Compositio Mathematica
Claude Sabbah (1995/1996)
Séminaire Bourbaki
Jean-Michel Bismut, Gilles Lebeau (1991)
Publications Mathématiques de l'IHÉS
Henri Gillet, Christophe Soulé (2000)
Annales de l'institut Fourier
We develop a formalism of direct images for metrized vector bundles in the context of the non-archimedean Arakelov theory introduced in our joint work with S. Bloch. We prove a Riemann-Roch-Grothendieck theorem for this direct image.
Page 1 Next