Displaying 21 – 40 of 70

Showing per page

Poincaré bundles for projective surfaces

Nicole Mestrano (1985)

Annales de l'institut Fourier

Let X be a smooth projective surface, K the canonical divisor, H a very ample divisor and M H ( c 1 , c 2 ) the moduli space of rank-two vector bundles, H -stable with Chern classes c 1 and c 2 . We prove that, if there exists c 1 ' such that c 1 is numerically equivalent to 2 c 1 ' and if c 2 - 1 4 c 1 2 is even, greater or equal to H 2 + H K + 4 , then there is no Poincaré bundle on M H ( c 1 , c 2 ) × X . Conversely, if there exists c 1 ' such that the number c 1 ' · c 1 is odd or if 1 2 c 1 2 - 1 2 c 1 · K - c 2 is odd, then there exists a Poincaré bundle on M H ( c 1 , c 2 ) × X .

Points rationnels et groupes fondamentaux : applications de la cohomologie p -adique

Antoine Chambert-loir (2002/2003)

Séminaire Bourbaki

Je présenterai des résultats de T. Ekedahl et H. Esnault sur les variétés projectives lisses sur un corps de caractéristique strictement positive, disons p , dont deux points peuvent être liés par une chaîne de courbes rationnelles, par exemple faiblement unirationnelles, ou de Fano. Notamment : 1) sur un corps fini, de telles variétés ont un point rationnel, résultat qui généralise le théorème de Chevalley-Warning ; 2) sur un corps algébriquement clos, de telles variétés ont un groupe fondamental...

Positivity and Kleiman transversality in equivariant K -theory of homogeneous spaces

Dave Anderson, Stephen Griffeth, Ezra Miller (2011)

Journal of the European Mathematical Society

We prove the conjectures of Graham–Kumar [GrKu08] and Griffeth–Ram [GrRa04] concerning the alternation of signs in the structure constants for torus-equivariant K -theory of generalized flag varieties G / P . These results are immediate consequences of an equivariant homological Kleiman transversality principle for the Borel mixing spaces of homogeneous spaces, and their subvarieties, under a natural group action with finitely many orbits. The computation of the coefficients in the expansion of the equivariant...

Positivity of Schur function expansions of Thom polynomials

Piotr Pragacz, Andrzej Weber (2007)

Fundamenta Mathematicae

Combining the approach to Thom polynomials via classifying spaces of singularities with the Fulton-Lazarsfeld theory of cone classes and positive polynomials for ample vector bundles, we show that the coefficients of the Schur function expansions of the Thom polynomials of stable singularities are nonnegative with positive sum.

Currently displaying 21 – 40 of 70