Platitude et non-platitude de certains sous-schémas de Hilb k PN.
Let be a smooth projective surface, the canonical divisor, a very ample divisor and the moduli space of rank-two vector bundles, -stable with Chern classes and . We prove that, if there exists such that is numerically equivalent to and if is even, greater or equal to , then there is no Poincaré bundle on . Conversely, if there exists such that the number is odd or if is odd, then there exists a Poincaré bundle on .
Je présenterai des résultats de T. Ekedahl et H. Esnault sur les variétés projectives lisses sur un corps de caractéristique strictement positive, disons , dont deux points peuvent être liés par une chaîne de courbes rationnelles, par exemple faiblement unirationnelles, ou de Fano. Notamment : 1) sur un corps fini, de telles variétés ont un point rationnel, résultat qui généralise le théorème de Chevalley-Warning ; 2) sur un corps algébriquement clos, de telles variétés ont un groupe fondamental...
Using the notion of the maximal polar quotient we characterize the critical values at infinity of polynomials in two complex variables. As an application we give a necessary and sufficient condition for a family of affine plane curves to be equisingular at infinity.
We prove the conjectures of Graham–Kumar [GrKu08] and Griffeth–Ram [GrRa04] concerning the alternation of signs in the structure constants for torus-equivariant -theory of generalized flag varieties . These results are immediate consequences of an equivariant homological Kleiman transversality principle for the Borel mixing spaces of homogeneous spaces, and their subvarieties, under a natural group action with finitely many orbits. The computation of the coefficients in the expansion of the equivariant...
Combining the approach to Thom polynomials via classifying spaces of singularities with the Fulton-Lazarsfeld theory of cone classes and positive polynomials for ample vector bundles, we show that the coefficients of the Schur function expansions of the Thom polynomials of stable singularities are nonnegative with positive sum.