Une remarque sur la cohomologie du faisceau de Zariski de la K-théorie de Milnor sur une variété lisse complexe.
In this paper, we shall discuss possible theories of defining equivariant singular Bott-Chern classes and corresponding uniqueness property. By adding a natural axiomatic characterization to the usual ones of equivariant Bott-Chern secondary characteristic classes, we will see that the construction of Bismut’s equivariant Bott-Chern singular currents provides a unique way to define a theory of equivariant singular Bott-Chern classes. This generalizes J. I. Burgos Gil and R. Liţcanu’s discussion...
The goal of this paper is to develop tools to study maximal families of Gorenstein quotients A of a polynomial ring R. We prove a very general theorem on deformations of the homogeneous coordinate ring of a scheme Proj(A) which is defined as the degeneracy locus of a regular section of the dual of some sheaf M of rank r supported on say an arithmetically Cohen-Macaulay subscheme Proj(B) of Proj(R). Under certain conditions (notably; M maximally Cohen-Macaulay and ∧r M ≈ KB(t) a twist of the canonical...