Liaison Equivalence Classes.
Define a line bundle on a projective variety to be -ample, for a natural number , if tensoring with high powers of kills coherent sheaf cohomology above dimension . Thus 0-ampleness is the usual notion of ampleness. We show that -ampleness of a line bundle on a projective variety in characteristic zero is equivalent to the vanishing of an explicit finite list of cohomology groups. It follows that -ampleness is a Zariski open condition, which is not clear from the definition.
Let X be a proper smooth variety having an affine open subset defined by the normic equation over a number field k. We prove that: (1) the failure of the local-global principle for zero-cycles is controlled by the Brauer group of X; (2) the analogue for rational points is also valid assuming Schinzel’s hypothesis.
Soient un espace analytique affinoïde réduit sur un corps complet pour une valeur absolue non archimédienne, sa réduction canonique et un point de la variété algébrique affine . Ce travail décrit la singularité du point à l’aide d’objets associés à l’espace : la localisation formelle qui est une -algèbre noethérienne de spectre maximal et dont la réduction est ; un complété formel qui est une -algèbre noethérienne dont la réduction est . Les résultats essentiels sont obtenus...