Displaying 41 – 60 of 61

Showing per page

Line bundles with partially vanishing cohomology

Burt Totaro (2013)

Journal of the European Mathematical Society

Define a line bundle L on a projective variety to be q -ample, for a natural number q , if tensoring with high powers of L kills coherent sheaf cohomology above dimension q . Thus 0-ampleness is the usual notion of ampleness. We show that q -ampleness of a line bundle on a projective variety in characteristic zero is equivalent to the vanishing of an explicit finite list of cohomology groups. It follows that q -ampleness is a Zariski open condition, which is not clear from the definition.

Local-global principle for certain biquadratic normic bundles

Yang Cao, Yongqi Liang (2014)

Acta Arithmetica

Let X be a proper smooth variety having an affine open subset defined by the normic equation N k ( a , b ) / k ( x ) = Q ( t , . . . , t ) ² over a number field k. We prove that: (1) the failure of the local-global principle for zero-cycles is controlled by the Brauer group of X; (2) the analogue for rational points is also valid assuming Schinzel’s hypothesis.

Localisation formelle et groupe de Picard

Jean Fresnel, Marius Van Der Put (1983)

Annales de l'institut Fourier

Soient X un espace analytique affinoïde réduit sur un corps K complet pour une valeur absolue non archimédienne, r : X X ^ sa réduction canonique et p X ^ un point de la variété algébrique affine X ^ . Ce travail décrit la singularité du point p à l’aide d’objets associés à l’espace X : la localisation formelle 𝒪 X , ( p ) qui est une K -algèbre noethérienne de spectre maximal r - 1 ( p ) et dont la réduction est 𝒪 X ^ , ( p )  ; un complété formel 𝒪 X , ( p ) qui est une K -algèbre noethérienne dont la réduction est 𝒪 X ^ , ( p ) . Les résultats essentiels sont obtenus...

Currently displaying 41 – 60 of 61