Addendum : «Inégalités numériques pour les surfaces de type général»
Let be a proper smooth variety over a field of characteristic and an effective divisor on with multiplicity. We introduce a generalized Albanese variety Alb of of modulus , as higher dimensional analogue of the generalized Jacobian with modulus of Rosenlicht-Serre. Our construction is algebraic. For we give a Hodge theoretic description.
Given a pseudo-effective divisor we construct the diminished ideal , a “continuous” extension of the asymptotic multiplier ideal for big divisors to the pseudo-effective boundary. Our main theorem shows that for most pseudo-effective divisors the multiplier ideal of the metric of minimal singularities on is contained in . We also characterize abundant divisors using the diminished ideal, indicating that the geometric and analytic information should coincide.
The double point relation defines a natural theory of algebraic cobordism for bundles on varieties. We construct a simple basis (over ) of the corresponding cobordism groups over Spec() for all dimensions of varieties and ranks of bundles. The basis consists of split bundles over products of projective spaces. Moreover, we prove the full theory for bundles on varieties is an extension of scalars of standard algebraic cobordism.
For an Abelian Variety , the Künneth decomposition of the rational equivalence class of the diagonal gives rise to explicit formulas for the projectors associated to Beauville's decomposition (1) of the Chow ring , in terms of push-forward and pull-back of -multiplication. We obtain a few simplifications of such formulas, see theorem (4) below, and some related results, see proposition (9) below.