Maximal Mordell-Weil lattices of fibred surfaces with
Previous Page 2
Shinya Kitagawa (2007)
Rendiconti del Seminario Matematico della Università di Padova
Massimiliano Mella (1999)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Mustafa D. Kaba, Hurşit Önsiper (2007)
Acta Arithmetica
Alberto Calabri, Ciro Ciliberto, Flaminio Flamini, Rick Miranda (2007)
Annales de l’institut Fourier
We deal with a reducible projective surface with so-called Zappatic singularities, which are a generalization of normal crossings. First we compute the -genus of , i.e. the dimension of the vector space of global sections of the dualizing sheaf . Then we prove that, when is smoothable, i.e. when is the central fibre of a flat family parametrized by a disc, with smooth general fibre, then the -genus of the fibres of is constant.
Mizuho Ishizaka (2007)
Revista Matemática Complutense
Yoshifumi Takeda (2007)
Colloquium Mathematicae
The pre-Tango structure is an ample invertible sheaf of locally exact differentials on a variety of positive characteristic. It is well known that pre-Tango structures on curves often induce pathological uniruled surfaces. We show that almost all pre-Tango structures on varieties induce higher-dimensional pathological uniruled varieties, and that each of these uniruled varieties also has a pre-Tango structure. For this purpose, we first consider the p-closed rational vector field induced...
Raimundo Araújo dos Santos, Ying Chen, Mihai Tibăr (2013)
Open Mathematics
We define open book structures with singular bindings. Starting with an extension of Milnor’s results on local fibrations for germs with nonisolated singularity, we find classes of genuine real analytic mappings which yield such open book structures.
Ivan Pan, Marcos Sebastiani (2001)
Annales de l’institut Fourier
On démontre qu'une feuille transcendante d'un feuilletage analytique sur une surface fibrée doit intersecter toute courbe algébrique non invariante et non contenue dans une réunion de fibres de la fibration; comme application on montre qu'une équation différentielle algébrique qui possède une solution locale avec une singularité essentielle n'a pas de ramification mobile, ce qui généralise les théorèmes de Malmquist et Yosida.
Bryan, Jim, Donagi, Ron (2002)
Geometry & Topology
Andrea Bruno, Massimiliano Mella (2013)
Journal of the European Mathematical Society
The paper studies fiber type morphisms between moduli spaces of pointed rational curves. Via Kapranov’s description we are able to prove that the only such morphisms are forgetful maps. This allows us to show that the automorphism group of is the permutation group on elements as soon as .
Mark Andrea A. de Cataldo, Luca Migliorini (2005)
Annales scientifiques de l'École Normale Supérieure
Luisa M. Camacho, Ivan Kaygorodov, Viktor Lopatkin, Mohamed A. Salim (2020)
Communications in Mathematics
We classify all complex - and -dimensional dual mock-Lie algebras by the algebraic and geometric way. Also, we find all non-trivial complex -dimensional dual mock-Lie algebras.
Cadavid, Carlos A., Vélez, Juan D. (2008)
Revista Colombiana de Matemáticas
Shigeharu Takayama (0)
Annales de l’institut Fourier
Olivier Debarre (2001/2002)
Séminaire Bourbaki
Igor Burban, Thilo Henrich (2015)
Journal of the European Mathematical Society
In this article, we develop a geometric method to construct solutions of the classical Yang–Baxter equation, attaching a family of classical -matrices to the Weierstrass family of plane cubic curves and a pair of coprime positive integers. It turns out that all elliptic -matrices arise in this way from smooth cubic curves. For the cuspidal cubic curve, we prove that the obtained solutions are rational and compute them explicitly. We also describe them in terms of Stolin’s classication and prove...
Previous Page 2