Rees algebras on smooth schemes: integral closure and higher differential operator.
2000 Mathematics Subject Classification: 14C20, 14E25, 14J26.The famous Nagata Conjecture predicts the lowest degree of a plane curve passing with prescribed multiplicities through given points in general position. We explain how this conjecture extends naturally via multiple point Seshadri constants to ample line bundles on arbitrary surfaces. We show that if there exist curves of unpredictable low degree, then they must have equal multiplicities in all but possibly one of the given points. We...
Nous présentons une méthode qui permet de calculer le transformée de Nash (et sa normalisation) d’une singularité de surface pour laquelle on dispose d’une résolution explicite. Comme exemple nous calculons la résolution des points doubles rationnels obtenue par itération du transformé de Nash normalisé.
Nous étudions une condition d’équisingularité définie pour une famille de singularités de surface normale par l’existence d’une résolution simultanée très faible et par une condition supplémentaire sur les faisceaux pluricanoniques relatifs. Nous donnons dans le cas d’une famille de singularités rationnelles une condition nécessaire et suffisante portant sur les singularités des fibres pour avoir équisingularité.
Let and be two compact strongly pseudoconvex CR manifolds of dimension which bound complex varieties and with only isolated normal singularities in and respectively. Let and be the singular sets of and respectively and is nonempty. If and the cardinality of is less than 2 times the cardinality of , then we prove that any non-constant CR morphism from to is necessarily a CR biholomorphism. On the other hand, let be a compact strongly pseudoconvex CR manifold of...