Une propriété des surfaces rationnelles
Previous Page 2
Luis Gustavo Mendes, Marcos Sebastiani (1998)
Annales de la Faculté des sciences de Toulouse : Mathématiques
Nicolas Pouyanne (1992)
Annales de la Faculté des sciences de Toulouse : Mathématiques
Walter Neumann, Lee Rudolph (1987)
Mathematische Annalen
Walter Neumann, Lee Rudolph (1988)
Mathematische Annalen
Grzegorz Zwara (2002)
Annales scientifiques de l'École Normale Supérieure
Baohua Fu, Yoshinori Namikawa (2004)
Annales de l’institut Fourier
We prove the uniqueness of crepant resolutions for some quotient singularities and for some nilpotent orbits. The finiteness of non-isomorphic symplectic resolutions for 4- dimensional symplectic singularities is proved. We also give an example of a symplectic singularity which admits two non-equivalent symplectic resolutions.
D. Denneberg (1973)
Mathematische Annalen
Indranil Biswas, Amit Hogadi, Yogish Holla (2014)
Open Mathematics
Let X be an irreducible smooth complex projective curve of genus g, with g ≥ 2. Let N be a connected component of the moduli space of semistable principal PGLr (ℂ)-bundles over X; it is a normal unirational complex projective variety. We prove that the Brauer group of a desingularization of N is trivial.
Fedor Bogomolov, Tihomir Petrov (2011)
Open Mathematics
We prove vanishing results for the unramified stable cohomology of alternating groups.
Johannes Huisman (2002)
Revista Matemática Complutense
Let C ⊆ Pn be an unramified nonspecial real space curve having many real branches and few ovals. We show that C is a rational normal curve if n is even, and that C is an M-curve having no ovals if n is odd.
Previous Page 2