Une propriété des surfaces rationnelles
We prove the uniqueness of crepant resolutions for some quotient singularities and for some nilpotent orbits. The finiteness of non-isomorphic symplectic resolutions for 4- dimensional symplectic singularities is proved. We also give an example of a symplectic singularity which admits two non-equivalent symplectic resolutions.
Let X be an irreducible smooth complex projective curve of genus g, with g ≥ 2. Let N be a connected component of the moduli space of semistable principal PGLr (ℂ)-bundles over X; it is a normal unirational complex projective variety. We prove that the Brauer group of a desingularization of N is trivial.
We prove vanishing results for the unramified stable cohomology of alternating groups.
Let C ⊆ Pn be an unramified nonspecial real space curve having many real branches and few ovals. We show that C is a rational normal curve if n is even, and that C is an M-curve having no ovals if n is odd.