The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We study the Ekedahl-Oort stratification on moduli spaces of PEL type. The strata are
indexed by the classes in a Weyl group modulo a subgroup, and each class has a
distinguished representative of minimal length. The main result of this paper is that the
dimension of a stratum equals the length of the corresponding Weyl group element. We also
discuss some explicit examples.
We show that the Deligne formal model of the Drinfeld -adic half-plane relative to a local field represents a moduli problem of polarized -modules with an action of the ring of integers in a quadratic extension of . The proof proceeds by establishing a comparison isomorphism with the Drinfeld moduli problem. This isomorphism reflects the accidental isomorphism of and for a two-dimensional split hermitian space for .
We prove some new effective results of André-Oort type. In particular, we state certain uniform improvements of the main result in [L. Kühne, Ann. of Math. 176 (2012), 651-671]. We also show that the equation X + Y = 1 has no solution in singular moduli. As a by-product, we indicate a simple trick rendering André's proof of the André-Oort conjecture effective. A significantly new aspect is the usage of both the Siegel-Tatuzawa theorem and the weak effective lower bound on the class number of an...
Currently displaying 1 –
13 of
13