The automorphism group of the modular curve
For any prime number p > 3 we compute the formal completion of the Néron model of J0(p) in terms of the action of the Hecke algebra on the Z-module of all cusp forms (of weight 2 with respect to Γ0(p)) with integral Fourier development at infinity.
Let be a curve over a field with a rational point . We define a canonical cycle . Suppose that is a number field and that has semi-stable reduction over the integers of with fiber components non-singular. We construct a regular model of and show that the height pairing is well defined where and are correspondences. The paper ends with a brief discussion of heights and -functions in the case that is a modular curve.