Characteristic Classes of Kuga Fiber Varieties of Quaternion Type.
We give examples of failure of the existence of co-fibered products in the category of algebraic curves.
Let 𝓐₂(n) = Γ₂(n)∖𝔖₂ be the quotient of Siegel's space of degree 2 by the principal congruence subgroup of level n in Sp(4,ℤ). This is the moduli space of principally polarized abelian surfaces with a level n structure. Let 𝓐₂(n)* denote the Igusa compactification of this space, and ∂𝓐₂(n)* = 𝓐₂(n)* - 𝓐₂(n) its "boundary". This is a divisor with normal crossings. The main result of this paper is the determination of H(∂𝓐₂(n)*) as a module over the finite group Γ₂(1)/Γ₂(n). As an application...
Nous construisons des compactifications toroïdales arithmétiques du champ de modules des variétés abéliennes principalement polarisées munies d’une structure de niveau parahorique. Pour ce faire, nous étendons la méthode de Faltings et Chai [7] à un cas de mauvaise réduction. Le voisinage du bord des compactifications obtenues n’est pas lisse, mais a pour singularités celles des champs de modules de variétés abéliennes avec structure parahorique de genre plus petit. Nous sommes amenés à reprendre...
Nous construisons la compactification minimale de certaines variétés modulaires de Siegel en leurs places de mauvaise réduction. Ces variétés paramètrent des schémas abéliens principalement polarisés munis d’une structure de niveau parahorique en un nombre premier et d’une structure de niveau auxilliaire ; elles ont mauvaise réduction en . Nous esquissons également une théorie arithmétique des formes modulaires de Siegel associées à ces variétés.
Soit un modèle entier en un premier d’une variété de Shimura de type PEL, ayant bonne réduction associée à un groupe réductif . On peut associer aux -représentations du groupe deux types de faisceaux : des cristaux sur la fibre spéciale de , et des systèmes locaux pour la topologie étale sur la fibre générique. Nous établissons un théorème de comparaison entre la cohomologie de ces deux types de faisceaux.
Soient une variété de Shimura, fermée et irréductible et un ensemble Zariski dense de points spéciaux. Selon la conjecture d’André–Oort, est une sous-variété de type Hodge. Par exemple, si est un espace de modules de variétés abéliennes, est un ensemble de points correspondant à des variétés de type CM et doit paramétrer des variétés abéliennes munies de certaines classes de Hodge. En utilisant les actions de l’algèbre de Hecke et du groupe de Galois, Edixhoven et Yafaev montrent certains...