A threefold with and
In this article we describe our experiences with a parallel Singular implementation of the signature of a surface singularity defined by z N + g(x; y) = 0.
In this paper we show that on a general hypersurface of degree r = 3,4,5,6 in P5 a rank 2 vector bundle ε splits if and only if h1ε(n) = h2ε(n) = 0 for all n ∈ Z. Similar results for r = 1,2 were obtained in [15], [16] and [2].
Let be a del Pezzo surface of degree , and let be the simple Lie group of type . We construct a locally closed embedding of a universal torsor over into the -orbit of the highest weight vector of the adjoint representation. This embedding is equivariant with respect to the action of the Néron-Severi torus of identified with a maximal torus of extended by the group of scalars. Moreover, the -invariant hyperplane sections of the torsor defined by the roots of are the inverse images...