O jedné ploše stupně čtvrtého
This note gives a generalization of spherical twists, and describe the autoequivalences associated to certain non-spherical objects. Typically these are obtained by deforming the structure sheaves of -curves on threefolds, or deforming -objects introduced by D.Huybrechts and R.Thomas.
We describe alternate methods of solution for a model arising in the work of Seiberg and Witten on N = 2 supersymmetric Yang-Mills theory and provide a complete argument for the characterization put forth by Argyres, Faraggi, and Shapere of the curve .
In this paper we give a characterization of the height of K3 surfaces in characteristic . This enables us to calculate the cycle classes in families of K3 surfaces of the loci where the height is at least . The formulas for such loci can be seen as generalizations of the famous formula of Deuring for the number of supersingular elliptic curves in characteristic . In order to describe the tangent spaces to these loci we study the first cohomology of higher closed forms.