Van Geemen's Families of lines on special quintic threefolds.
Let X be a general complete intersection of a given multi-degree in a complex projective space. Suppose that the anti-canonical line bundle of X is ample. Using the cylinder homomorphism associated with the family of complete intersections of a smaller multi-degree contained in X, we prove that the vanishing cycles in the middle homology group of X are represented by topological cycles whose support is contained in a proper Zariski closed subset T of X with certain codimension. In some cases, by...
Here we give conditions and examples for the surjectivity or injectivity of the restriction map , where is a projective variety, is a vector bundle on and is a “general” -dimensional subscheme of , union of general “fat points”.
Soit une variété algébrique projective lisse irréductible. On appelle variété de modules fins de faisceaux sur une famille de faisceaux cohérents sur paramétrée par une variété intègre , possédant les propriétés suivantes : est plate sur ; pour tous distincts, les faisceaux et sur ne sont pas isomorphes et est une déformation complète de ; enfin possède une propriété universelle locale évidente. On a aussi la notion de variété de modules fins définie localement, où est...
Une variété horosphérique est une variété algébrique normale dans laquelle un groupe algébrique réductif opère avec une orbite ouverte fibrée en tores sur une variété de drapeaux. En particulier, les variétés toriques et les variétés de drapeaux sont horosphériques. Dans cet article, on classifie les variétés horosphériques de Fano en termes de certains polytopes rationnels qui généralisent les polytopes réflexifs considérés par V. Batyrev. Puis on obtient une majoration du degré des variétés horosphériques...
Let be a uniruled projective manifold and let be a general point. The main result of [2] says that if the -degrees (i.e., the degrees with respect to the anti-canonical bundle of ) of all rational curves through are at least , then is a projective space. In this paper, we study the structure of when the -degrees of all rational curves through are at least . Our study uses the projective variety , called the VMRT at , defined as the union of tangent directions to the rational curves...
We study various "generic" nefness and ampleness notions for holomorphic vector bundles on a projective manifold. We apply this in particular to the tangent bundle and investigate the relation to the geometry of the manifold.