Loading [MathJax]/extensions/MathZoom.js
La méthode de la descente a été introduite et développée par Colliot-Thélène et Sansuc. Elle permet d’étudier l’arithmétique de certaines variétés rationnelles. Dans ce texte on montre comment il en résulte que pour certaines familles de variétés rationnelles sur un corps local de caractéristique nulle le nombre des classes de -équivalence de la fibre est localement constant quand varie dans .
On construit des courbes elliptiques sur de rang au moins 3, avec un sous-groupe de torsion non trivial. Par spécialisation, des courbes elliptiques de rang 5 et 6 sur sont obtenues.
By the results of the author and Chiantini in [3], on a general quintic threefold X⊂P 4 the minimum integer p for which there exists a positive dimensional family of irreducible rank p vector bundles on X without intermediate cohomology is at least three. In this paper we show that p≤4, by constructing series of positive dimensional families of rank 4 vector bundles on X without intermediate cohomology. The general member of such family is an indecomposable bundle from the extension class Ext 1...
In this paper all non-splitting rank-two vector bundles E without intermediate cohomology on a general quartic hypersurface X in P4 are classified. In particular, the existence of some curves on a general quartic hypersurface is proved.
We survey some parts of the vast literature on vector bundles on Hirzebruch surfaces, focusing on the rank-two case.
In this paper we determine the greatest degree of a rational projectively Cohen-Macaulay (p.C.M.) surface V in PN and we study the surfaces which attain such maximum degree.
Currently displaying 1 –
20 of
65