Previous Page 2

Displaying 21 – 40 of 40

Showing per page

Moduli spaces of decomposable morphisms of sheaves and quotients by non-reductive groups

Jean-Marc Drézet, Günther Trautmann (2003)

Annales de l’institut Fourier

We extend the methods of geometric invariant theory to actions of non–reductive groups in the case of homomorphisms between decomposable sheaves whose automorphism groups are non–reductive. Given a linearization of the natural action of the group Aut ( E ) × Aut ( F ) on Hom(E,F), a homomorphism is called stable if its orbit with respect to the unipotent radical is contained in the stable locus with respect to the natural reductive subgroup of the automorphism group. We encounter effective numerical conditions for...

Moment-angle complexes from simplicial posets

Zhi Lü, Taras Panov (2011)

Open Mathematics

We extend the construction of moment-angle complexes to simplicial posets by associating a certain T m-space Z S to an arbitrary simplicial poset S on m vertices. Face rings ℤ[S] of simplicial posets generalise those of simplicial complexes, and give rise to new classes of Gorenstein and Cohen-Macaulay rings. Our primary motivation is to study the face rings ℤ[S] by topological methods. The space Z S has many important topological properties of the original moment-angle complex Z K associated to...

Monodromy of a family of hypersurfaces

Vincenzo Di Gennaro, Davide Franco (2009)

Annales scientifiques de l'École Normale Supérieure

Let Y be an ( m + 1 ) -dimensional irreducible smooth complex projective variety embedded in a projective space. Let Z be a closed subscheme of Y , and δ be a positive integer such that Z , Y ( δ ) is generated by global sections. Fix an integer d δ + 1 , and assume the general divisor X | H 0 ( Y , Z , Y ( d ) ) | is smooth. Denote by H m ( X ; ) Z van the quotient of H m ( X ; ) by the cohomology of Y and also by the cycle classes of the irreducible components of dimension m of Z . In the present paper we prove that the monodromy representation on H m ( X ; ) Z van for the family of smooth...

Multi-Harnack smoothings of real plane branches

Pedro Daniel González Pérez, Jean-Jacques Risler (2010)

Annales scientifiques de l'École Normale Supérieure

Let Δ 𝐑 2 be an integral convex polygon. G. Mikhalkin introduced the notion ofHarnack curves, a class of real algebraic curves, defined by polynomials supported on Δ and contained in the corresponding toric surface. He proved their existence, viaViro’s patchworkingmethod, and that the topological type of their real parts is unique (and determined by Δ ). This paper is concerned with the description of the analogous statement in the case of a smoothing of a real plane branch ( C , 0 ) . We introduce the class...

Currently displaying 21 – 40 of 40

Previous Page 2