Displaying 461 – 480 of 1240

Showing per page

Hyperdéterminant d’un S L 2 -homomorphisme

Jean Vallès (2008)

Annales mathématiques Blaise Pascal

Etant donnés A 1 , , A s ( s 3 ) des S L 2 ( ) -modules non triviaux de dimensions respectives n 1 + 1 n s + 1 (avec n 1 = n 2 + + n s ) et φ ( A 2 A s , A 1 * ) un S L 2 ( ) -homomorphisme, nous montrons que l’hyperdéterminant de φ est nul sauf si les modules A i sont irréductibles et si l’homomorphisme est la multiplication des polynômes homogènes à deux variables.

Hyperplane section 𝕆 0 2 of the complex Cayley plane as the homogeneous space F 4 / P 4

Karel Pazourek, Vít Tuček, Peter Franek (2011)

Commentationes Mathematicae Universitatis Carolinae

We prove that the exceptional complex Lie group F 4 has a transitive action on the hyperplane section of the complex Cayley plane 𝕆 2 . Although the result itself is not new, our proof is elementary and constructive. We use an explicit realization of the vector and spin actions of Spin ( 9 , ) F 4 . Moreover, we identify the stabilizer of the F 4 -action as a parabolic subgroup P 4 (with Levi factor B 3 T 1 ) of the complex Lie group F 4 . In the real case we obtain an analogous realization of F 4 ( - 20 ) / .

Improvement of Grauert-Riemenschneider's theorem for a normal surface

Jean Giraud (1982)

Annales de l'institut Fourier

Let X ˜ be a desingularization of a normal surface X . The group Pic ( X ˜ ) is provided with an order relation L _ 0 , defined by L . V 0 for any effective exceptional divisor V . Comparing to the usual order relation we define the ceiling of L which is an exceptional divisor. This notion allows us to improve the usual vanishing theorem and we deduce from it a numerical criterion for rationality and a genus formula for a curve on a normal surface; the difficulty lies in the case of a Weil divisor which is not a Cartier...

Indices of 1-forms and Newton polyhedra.

Alexander Esterov (2005)

Revista Matemática Complutense

A formula of Matsuo Oka (1990) expresses the Milnor number of a germ of a complex analytic map with a generic principal part in terms of the Newton polyhedra of the components of the map. In this paper this formula is generalized to the case of the index of a 1-form on a local complete intersection singularity (Theorem 1.10, Corollaries 1.11, 4.1). In particular, the Newton polyhedron of a 1-form is defined (Definition 1.6). This also simplifies the Oka formula in some particular cases (Propositions...

Integration over homogeneous spaces for classical Lie groups using iterated residues at infinity

Magdalena Zielenkiewicz (2014)

Open Mathematics

Using the Berline-Vergne integration formula for equivariant cohomology for torus actions, we prove that integrals over Grassmannians (classical, Lagrangian or orthogonal ones) of characteristic classes of the tautological bundle can be expressed as iterated residues at infinity of some holomorphic functions of several variables. The results obtained for these cases can be expressed as special cases of one formula involving the Weyl group action on the characters of the natural representation of...

Intersection cohomology of reductive varieties

Roy Joshua, Michel Brion (2004)

Journal of the European Mathematical Society

We extend the methods developed in our earlier work to algorithmically compute the intersection cohomology Betti numbers of reductive varieties. These form a class of highly symmetric varieties that includes equivariant compactifications of reductive groups. Thereby, we extend a well-known algorithm for toric varieties.

Introduction to actions of algebraic groups

Michel Brion (2010)

Les cours du CIRM

These notes present some fundamental results and examples in the theory of algebraic group actions, with special attention to the topics of geometric invariant theory and of spherical varieties. Their goal is to provide a self-contained introduction to more advanced lectures.

Currently displaying 461 – 480 of 1240