Displaying 41 – 60 of 115

Showing per page

Cohomologie et K-théorie équivariantes des variétés de Bott-Samelson et des variétés de drapeaux

Matthieu Willems (2004)

Bulletin de la Société Mathématique de France

L’objet de cet article est de calculer la cohomologie et la K-théorie équivariantes des variétés de Bott-Samelson (théorèmes 3.3 et 4.3) et d’en déduire des résultats sur les variétés de drapeaux des groupes de Kac-Moody. Dans la section 3, on retrouve la formule de restriction aux points fixes de la base { ξ ^ w } w W de H T * ( G / B ) (théorème 3.9) prouvée par Sara Billey dans [4]. Dans la section 4, on donne l’expression explicite de la restriction aux points fixes de la base { ψ ^ w } w W de K T ( G / B ) définie par Kostant et Kumar dans...

Cohomology of G / P for classical complex Lie supergroups G and characters of some atypical G -modules

Ivan Penkov, Vera Serganova (1989)

Annales de l'institut Fourier

We compute the unique nonzero cohomology group of a generic G 0 - linearized locally free 𝒪 -module, where G 0 is the identity component of a complex classical Lie supergroup G and P G 0 is an arbitrary parabolic subsupergroup. In particular we prove that for G ( m ) , S ( m ) this cohomology group is an irreducible G 0 -module. As an application we generalize the character formula of typical irreducible G 0 -modules to a natural class of atypical modules arising in this way.

Cohomology, symmetry and perfection.

Emili Bifet (1992)

Publicacions Matemàtiques

We explain the philosophy behind the computations in [BDP] and place them in a wider conceptual setting. We also outline, for toric varieties, the resulting equivalent approach to some key results in that theory.

Combinatorial construction of toric residues.

Amit Khetan, Ivan Soprounov (2005)

Annales de l’institut Fourier

In this paper we investigate the problem of finding an explicit element whose toric residue is equal to one. Such an element is shown to exist if and only if the associated polytopes are essential. We reduce the problem to finding a collection of partitions of the lattice points in the polytopes satisfying a certain combinatorial property. We use this description to solve the problem when n = 2 and for any n when the polytopes of the divisors share a complete flag of faces. The latter generalizes earlier...

Combinatoric of syzygies for semigroup algebras.

Emilio Briales, Pilar Pisón, Antonio Campillo, Carlos Marijuán (1998)

Collectanea Mathematica

We describe how the graded minimal resolution of certain semigroup algebras is related to the combinatorics of some simplicial complexes. We obtain characterizations of the Cohen-Macaulay and Gorenstein conditions. The Cohen-Macaulay type is computed from combinatorics. As an application, we compute explicitly the graded minimal resolution of monomial both affine and simplicial projective surfaces.

Currently displaying 41 – 60 of 115