Displaying 101 – 120 of 122

Showing per page

Sur les équations d'Halphen et les actions de SL2(C)

Adolfo Guillot (2007)

Publications Mathématiques de l'IHÉS

On étudie les aspects locaux et globaux des actions holomorphes de SL2(C) sur les variétés complexes de dimension trois, à partir de l’étude des algèbres de Lie de champs de vecteurs qui engendrent une action uniforme. On décrit géométriquement et dynamiquement une famille de telles algèbres étudiée par Halphen vers la fin du XIXème siècle. On donne des formes normales pour les actions de SL2(C) au voisinage des orbites unidimensionnelles. On étudie ensuite les compactifications équivariantes des...

Sur les orbites d’un sous-groupe sphérique dans la variété des drapeaux

Nicolas Ressayre (2004)

Bulletin de la Société Mathématique de France

Soient G un groupe algébrique complexe réductif et connexe, B un sous-groupe de Borel de G et H un sous-groupe sphérique de G . Soit X un plongement G × G -équivariant de G . Nous savons que B × H n’a qu’un nombre fini d’orbites dans G  ; nous montrons qu’il n’en a qu’un nombre fini dans X . Soit V ¯ l’adhérence dans X d’une orbite de B × H dans G et 𝒪 ¯ l’adhérence d’une orbite de G × G dans X . Si X est toroïdal, nous montrons que l’intersection V ¯ 𝒪 ¯ est propre dans X et la décrivons ensemblistement. Si de plus X est lisse,...

Sur les représentations de dimension finie de la super algèbre de Lie 𝔤𝔩 ( m , n )

Caroline Gruson (2005/2006)

Séminaire Bourbaki

La catégorie des modules de dimension finie sur la super algèbre de Lie 𝔤𝔩 ( m , n ) n’est pas semi-simple. Elle se décompose en une infinité de blocs, dont on cherche depuis les travaux de Kac en 1977 à comprendre la structure. Vera Serganova apporte une réponse presque complète à ce problème, formulée selon le cercle d’idées introduites par Bernstein, Gelfand et Gelfand pour étudier la catégorie 𝒪 dans le cas classique ; ne disposant pas pour 𝔤𝔩 ( m , n ) d’analogues des théorèmes de Kostant et de Borel-Weil-Bott,...

Sur les singularités isolées d'intersections complètes quasi-homogènes

Marc Giusti (1977)

Annales de l'institut Fourier

Le résultat principal de cet article est une formule explicite donnant le nombre de Milnor d’une singularité isolée d’intersection complète quasi-homogène d’une courbe de C 3 en fonction des degrés et des poids. Ce calcul effectué par des méthodes topologiques repose sur le théorème suivant : la fibre de Milnor d’une singularité isolée d’intersection complète quasi-homogène ne dépend que des degrés et des poids à difféomorphisme près. Une autre conséquence de ce théorème est l’existence d’une morsification...

Sur les variétés X N telles que par n points passe une courbe de X de degré donné

Luc Pirio, Jean-Marie Trépreau (2013)

Bulletin de la Société Mathématique de France

Soit r 1 , n 2 , et q n - 1 des entiers. On introduit la classe 𝒳 r + 1 , n ( q ) des sous-variétés X de dimension r + 1 d’un espace projectif, telles que pour ( x 1 , ... , x n ) X n générique, il existe une courbe rationnelle normale de degré q , contenue dans X et passant par les points x 1 , ... , x n  ; X engendre un espace projectif dont la dimension, pour r , n et q donnés, est la plus grande possible compte tenu de la première propriété. Sous l’hypothèse q 2 n - 3 , on détermine toutes les variétés X appartenant à la classe 𝒳 r + 1 , n ( q ) . On montre en particulier qu’il existe une...

Currently displaying 101 – 120 of 122