Sur le type principal d'orbites d'un module rationnel
On étudie les aspects locaux et globaux des actions holomorphes de SL2(C) sur les variétés complexes de dimension trois, à partir de l’étude des algèbres de Lie de champs de vecteurs qui engendrent une action uniforme. On décrit géométriquement et dynamiquement une famille de telles algèbres étudiée par Halphen vers la fin du XIXème siècle. On donne des formes normales pour les actions de SL2(C) au voisinage des orbites unidimensionnelles. On étudie ensuite les compactifications équivariantes des...
Soient un groupe algébrique complexe réductif et connexe, un sous-groupe de Borel de et un sous-groupe sphérique de . Soit un plongement -équivariant de . Nous savons que n’a qu’un nombre fini d’orbites dans ; nous montrons qu’il n’en a qu’un nombre fini dans . Soit l’adhérence dans d’une orbite de dans et l’adhérence d’une orbite de dans . Si est toroïdal, nous montrons que l’intersection est propre dans et la décrivons ensemblistement. Si de plus est lisse,...
La catégorie des modules de dimension finie sur la super algèbre de Lie n’est pas semi-simple. Elle se décompose en une infinité de blocs, dont on cherche depuis les travaux de Kac en 1977 à comprendre la structure. Vera Serganova apporte une réponse presque complète à ce problème, formulée selon le cercle d’idées introduites par Bernstein, Gelfand et Gelfand pour étudier la catégorie dans le cas classique ; ne disposant pas pour d’analogues des théorèmes de Kostant et de Borel-Weil-Bott,...
Le résultat principal de cet article est une formule explicite donnant le nombre de Milnor d’une singularité isolée d’intersection complète quasi-homogène d’une courbe de en fonction des degrés et des poids. Ce calcul effectué par des méthodes topologiques repose sur le théorème suivant : la fibre de Milnor d’une singularité isolée d’intersection complète quasi-homogène ne dépend que des degrés et des poids à difféomorphisme près. Une autre conséquence de ce théorème est l’existence d’une morsification...
Soit , , et des entiers. On introduit la classe des sous-variétés de dimension d’un espace projectif, telles que pour générique, il existe une courbe rationnelle normale de degré , contenue dans et passant par les points ; engendre un espace projectif dont la dimension, pour , et donnés, est la plus grande possible compte tenu de la première propriété. Sous l’hypothèse , on détermine toutes les variétés appartenant à la classe . On montre en particulier qu’il existe une...