Displaying 381 – 400 of 471

Showing per page

Spectral geometry of semi-algebraic sets

Mikhael Gromov (1992)

Annales de l'institut Fourier

The spectrum of the Laplace operator on algebraic and semialgebraic subsets A in R N is studied and the number of small eigenvalues is estimated by the degree of A .

Spectral Real Semigroups

M. Dickmann, A. Petrovich (2012)

Annales de la faculté des sciences de Toulouse Mathématiques

The notion of a real semigroup was introduced in [8] to provide a framework for the investigation of the theory of (diagonal) quadratic forms over commutative, unitary, semi-real rings. In this paper we introduce and study an outstanding class of such structures, that we call spectral real semigroups (SRS). Our main results are: (i) The existence of a natural functorial duality between the category of SRSs and that of hereditarily normal spectral spaces; (ii) Characterization of the SRSs as the...

Strict uniformization of real algebraic curves and global real analytic coordinates on real Teichmüller spaces.

J. Huisman (1999)

Revista Matemática Complutense

We construct a global system of real analytic coordinates on the real Teichmüller space of a compact real algebraic curve X, using so-called strict uniformization of the real algebraic curve X. A global coordinate system is then obtained via real quasiconformal deformations of the Kleinian subgroup of PGL2(R) obtained as a group of covering transformations of a strict uniformization of X.

Structure locale et globale des feuilletages de Rolle, un théorème de fibration

Frédéric Chazal (1998)

Annales de l'institut Fourier

Un feuilletage de codimension un sur une variété orientable M est de Rolle s’il vérifie la propriété suivante : une courbe transverse à coupe au plus une fois chaque feuille. Soit Q une fonction tapissante sur M , i.e. propre et possédant un nombre fini de valeurs critiques. Nous montrons que si l’ensemble des singularités de la restriction de Q aux feuilles de F vérifie certaines propriétés de finitude, alors la restriction de au complémentaire d’un nombre fini de feuilles possède une structure...

Subanalytic version of Whitney's extension theorem

Krzysztof Kurdyka, Wiesław Pawłucki (1997)

Studia Mathematica

For any subanalytic C k -Whitney field (k finite), we construct its subanalytic C k -extension to n . Our method also applies to other o-minimal structures; e.g., to semialgebraic Whitney fields.

Sum of squares and the Łojasiewicz exponent at infinity

Krzysztof Kurdyka, Beata Osińska-Ulrych, Grzegorz Skalski, Stanisław Spodzieja (2014)

Annales Polonici Mathematici

Let V ⊂ ℝⁿ, n ≥ 2, be an unbounded algebraic set defined by a system of polynomial equations h ( x ) = = h r ( x ) = 0 and let f: ℝⁿ→ ℝ be a polynomial. It is known that if f is positive on V then f | V extends to a positive polynomial on the ambient space ℝⁿ, provided V is a variety. We give a constructive proof of this fact for an arbitrary algebraic set V. Precisely, if f is positive on V then there exists a polynomial h ( x ) = i = 1 r h ² i ( x ) σ i ( x ) , where σ i are sums of squares of polynomials of degree at most p, such that f(x) + h(x) > 0 for x...

Supplement to the paper "Quasianalytic perturbation of multi-parameter hyperbolic polynomials and symmetric matrices" (Ann. Polon. Math. 101 (2011), 275-291)

Krzysztof Jan Nowak (2012)

Annales Polonici Mathematici

In IMUJ Preprint 2009/05 we investigated the quasianalytic perturbation of hyperbolic polynomials and symmetric matrices by applying our quasianalytic version of the Abhyankar-Jung theorem from IMUJ Preprint 2009/02, whose proof relied on a theorem by Luengo on ν-quasiordinary polynomials. But those papers of ours were suspended after we had become aware that Luengo's paper contained an essential gap. This gave rise to our subsequent article on quasianalytic perturbation theory, which developed,...

Sur certains sous-ensembles de l'espace euclidien

Jean-Yves Charbonnel (1991)

Annales de l'institut Fourier

Soit 𝒜 ˜ m l’algèbre des fonctions sur R n engendrée par les fonctions polynomiales et les exponentielles de formes linéaires. La partie S de R n appartient à 𝒫 n si et seulement s’il existe m et F dans 𝒜 ˜ n + m pour lesquels S est l’image par la projection canonique de R n + m sur R n , de l’ensemble des zéros de F . Soit 𝒫 ˜ n le plus petit sous-ensemble de parties de R n qui contient 𝒫 n , l’adhérence de ses éléments et les images par la projection canonique de R n qui contient 𝒫 n , l’adhérence de ses éléments et les images par la...

Sur la dynamique des difféomorphismes birationnels des surfaces algébriques réelles : ensemble de Fatou et lieu réel

Arnaud Moncet (2013)

Annales de la faculté des sciences de Toulouse Mathématiques

On s’intéresse aux difféomorphismes birationnels des surfaces algébriques réelles qui possèdent une dynamique réelle simple et une dynamique complexe riche. On donne un exemple d’une telle transformation sur 1 × 1 , mais on montre qu’une telle situation est exceptionnelle et impose des conditions fortes à la fois sur la topologie du lieu réel et sur la dynamique réelle.

Sur la première classe de Stiefel-Whitney de l’espace des applications stables réelles vers l’espace projectif

Nicolas Puignau (2010)

Annales de l’institut Fourier

L’espace de module des applications stables vers l’espace projectif possède naturellement une structure réelle dont la partie réelle est une variété projective normale. Cette dernière est un espace de module pour les courbes spatiales rationnelles réelles avec des points marqués réels. Puisque le lieu singulier est de codimension au moins deux, une première classe de Stiefel-Whitney est bien définie. Dans cet article nous déterminons un représentant pour la première classe de Stiefel-Whitney dans...

Sur la réalité des points doubles des courbes gauches

Daniel Pecker (1999)

Annales de l'institut Fourier

Une courbe réelle peut avoir des points doubles ordinaires de trois types différents : des points doubles réels à tangentes réelles, des points doubles réels isolés dans le domaine réel et des points doubles imaginaires. Soient α , β , γ , d n 2 des entiers tels que α + β + 2 γ C ( d , n ) (où C ( d , n ) désigne la borne de Castelnuovo). On construit une courbe réelle irréductible de degré d , non dégénérée dans l’espace projectif P n (i.e. non contenue dans un hyperplan) ayant pour seules singularités α points doubles réels à tangentes réelles,...

Currently displaying 381 – 400 of 471