Displaying 61 – 80 of 99

Showing per page

Perimeter preservers of nonnegative integer matrices

Seok-Zun Song, Kyung-Tae Kang, Sucheol Yi (2004)

Commentationes Mathematicae Universitatis Carolinae

We investigate the perimeter of nonnegative integer matrices. We also characterize the linear operators which preserve the rank and perimeter of nonnegative integer matrices. That is, a linear operator T preserves the rank and perimeter of rank- 1 matrices if and only if it has the form T ( A ) = P ( A B ) Q , or T ( A ) = P ( A t B ) Q with appropriate permutation matrices P and Q and positive integer matrix B , where denotes Hadamard product.

Relationship of certain rings of infinite matrices over integers

Mario Petrich, Pedro V. Silva (2000)

Bollettino dell'Unione Matematica Italiana

Sia N l'insieme degli interi non negativi e Z l'anello degli interi. Sia A l'anello delle matrici N × N su Z che hanno solo un numero finito di cifre non nulle in ogni linea ed in ogni colonna. Sia B il sottoanello generato da X e Y , dove X (rispettivamente Y ) è ottenuto dalla matrice identità muovendo gli 1 una posizione a destra (rispettivamente in giù). Sia pure C il sottoanello di A generato da 1 - X e 1 - Y . Infine sia F il sottoanello delle matrici di A che hanno solo un numero finito di cifre non nulle....

Some decision problems on integer matrices

Christian Choffrut, Juhani Karhumäki (2005)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

Given a finite set of matrices with integer entries, consider the question of determining whether the semigroup they generated 1) is free; 2) contains the identity matrix; 3) contains the null matrix or 4) is a group. Even for matrices of dimension 3 , questions 1) and 3) are undecidable. For dimension 2 , they are still open as far as we know. Here we prove that problems 2) and 4) are decidable by proving more generally that it is recursively decidable whether or not a given non singular matrix belongs...

Some decision problems on integer matrices

Christian Choffrut, Juhani Karhumäki (2010)

RAIRO - Theoretical Informatics and Applications

Given a finite set of matrices with integer entries, consider the question of determining whether the semigroup they generated 1) is free; 2) contains the identity matrix; 3) contains the null matrix or 4) is a group. Even for matrices of dimension 3, questions 1) and 3) are undecidable. For dimension 2, they are still open as far as we know. Here we prove that problems 2) and 4) are decidable by proving more generally that it is recursively decidable whether or not a given non singular matrix belongs...

Some Examples of Rigid Representations

Kostov, Vladimir (2000)

Serdica Mathematical Journal

*Research partially supported by INTAS grant 97-1644.Consider the Deligne-Simpson problem: give necessary and sufficient conditions for the choice of the conjugacy classes Cj ⊂ GL(n,C) (resp. cj ⊂ gl(n,C)) so that there exist irreducible (p+1)-tuples of matrices Mj ∈ Cj (resp. Aj ∈ cj) satisfying the equality M1 . . .Mp+1 = I (resp. A1+. . .+Ap+1 = 0). The matrices Mj and Aj are interpreted as monodromy operators and as matrices-residua of fuchsian systems on Riemann’s sphere. We give new examples...

The algebra of the subspace semigroup of M ( q )

Jan Okniński (2002)

Colloquium Mathematicae

The semigroup S = S ( M ( q ) ) of subspaces of the algebra M ( q ) of 2 × 2 matrices over a finite field q is studied. The ideal structure of S, the regular -classes of S and the structure of the complex semigroup algebra ℂ[S] are described.

Currently displaying 61 – 80 of 99