Displaying 81 – 100 of 250

Showing per page

Clean matrices over commutative rings

Huanyin Chen (2009)

Czechoslovak Mathematical Journal

A matrix A M n ( R ) is e -clean provided there exists an idempotent E M n ( R ) such that A - E GL n ( R ) and det E = e . We get a general criterion of e -cleanness for the matrix [ [ a 1 , a 2 , , a n + 1 ] ] . Under the n -stable range condition, it is shown that [ [ a 1 , a 2 , , a n + 1 ] ] is 0 -clean iff ( a 1 , a 2 , , a n + 1 ) = 1 . As an application, we prove that the 0 -cleanness and unit-regularity for such n × n matrix over a Dedekind domain coincide for all n 3 . The analogous for ( s , 2 ) property is also obtained.

Clifford semifields

Mridul K. Sen, Sunil K. Maity, Kar-Ping Shum (2004)

Discussiones Mathematicae - General Algebra and Applications

It is well known that a semigroup S is a Clifford semigroup if and only if S is a strong semilattice of groups. We have recently extended this important result from semigroups to semirings by showing that a semiring S is a Clifford semiring if and only if S is a strong distributive lattice of skew-rings. In this paper, we introduce the notions of Clifford semidomain and Clifford semifield. Some structure theorems for these semirings are obtained.

Closed extensions of R-modules in the case of a semi-artinian ring R

Frans Loonstra (1985)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Si considerano le estensioni chiuse B di un R -modulo A mediante un R -modulo C nel caso in cui R sia un anello semi-artiniano, cioè un anello R con la proprietà che per ogni quoziente ( R / I ) 0 sia soc ( R / I ) 0 . Tali estensioni sono caratterizzate dal fatto che A deve essere un sottomodulo semi-puro di B .

Closure rings

Barry J. Gardner, Tim Stokes (1999)

Commentationes Mathematicae Universitatis Carolinae

We consider rings equipped with a closure operation defined in terms of a collection of commuting idempotents, generalising the idea of a topological closure operation defined on a ring of sets. We establish the basic properties of such rings, consider examples and construction methods, and then concentrate on rings which have a closure operation defined in terms of their lattice of central idempotents.

Cluster categories for algebras of global dimension 2 and quivers with potential

Claire Amiot (2009)

Annales de l’institut Fourier

Let k be a field and A a finite-dimensional k -algebra of global dimension 2 . We construct a triangulated category 𝒞 A associated to A which, if  A is hereditary, is triangle equivalent to the cluster category of A . When 𝒞 A is Hom-finite, we prove that it is 2-CY and endowed with a canonical cluster-tilting object. This new class of categories contains some of the stable categories of modules over a preprojective algebra studied by Geiss-Leclerc-Schröer and by Buan-Iyama-Reiten-Scott. Our results also...

Cluster characters for 2-Calabi–Yau triangulated categories

Yann Palu (2008)

Annales de l’institut Fourier

Starting from an arbitrary cluster-tilting object T in a 2-Calabi–Yau triangulated category over an algebraically closed field, as in the setting of Keller and Reiten, we define, for each object L , a fraction X ( T , L ) using a formula proposed by Caldero and Keller. We show that the map taking L to X ( T , L ) is a cluster character, i.e. that it satisfies a certain multiplication formula. We deduce that it induces a bijection, in the finite and the acyclic case, between the indecomposable rigid objects of the cluster...

Coalgebraic Approach to the Loday Infinity Category, Stem Differential for 2 n -ary Graded and Homotopy Algebras

Mourad Ammar, Norbert Poncin (2010)

Annales de l’institut Fourier

We define a graded twisted-coassociative coproduct on the tensor algebra the desuspension space of a graded vector space V . The coderivations (resp. quadratic “degree 1” codifferentials, arbitrary odd codifferentials) of this coalgebra are 1-to-1 with sequences of multilinear maps on V (resp. graded Loday structures on V , sequences that we call Loday infinity structures on V ). We prove a minimal model theorem for Loday infinity algebras and observe that the Lod category contains the L category as...

Coalgebras, comodules, pseudocompact algebras and tame comodule type

Daniel Simson (2001)

Colloquium Mathematicae

We develop a technique for the study of K-coalgebras and their representation types by applying a quiver technique and topologically pseudocompact modules over pseudocompact K-algebras in the sense of Gabriel [17], [19]. A definition of tame comodule type and wild comodule type for K-coalgebras over an algebraically closed field K is introduced. Tame and wild coalgebras are studied by means of their finite-dimensional subcoalgebras. A weak version of the tame-wild dichotomy theorem of Drozd [13]...

Cobraided smash product Hom-Hopf algebras

Tianshui Ma, Haiying Li, Tao Yang (2014)

Colloquium Mathematicae

Let (A,α) and (B,β) be two Hom-Hopf algebras. We construct a new class of Hom-Hopf algebras: R-smash products ( A R B , α β ) . Moreover, necessary and sufficient conditions for ( A R B , α β ) to be a cobraided Hom-Hopf algebra are given.

Codimension B-W d’un idéal à droite non nul de A 1 ( )

Mathias Konan Kouakou (2005)

Bulletin de la Société Mathématique de France

Soit A 1 ( ) la première algèbre de Weyl sur . La codimension B-W d’un idéal à droite non nul I de A 1 ( ) a été introduite par Yuri Berest et George Wilson. Nous montrons d’une part que cette codimension est invariante par la relation de Stafford : si x Q 1 = Frac ( A 1 ( ) ) , le corps de fractions de A 1 ( ) , et si σ Aut ( A 1 ( ) ) , le groupe des -automorphismes de A 1 ( ) , sont tels que J = x σ ( I ) soit un idéal à droite de A 1 ( ) , alors codim I = codim x σ ( I ) . Nous relions d’autre part la codimension d’un idéal I à la codimension de Gail Letzter-Makar Limanov, de End ( I ) , l’anneau des endomorphismes...

Currently displaying 81 – 100 of 250