Displaying 1061 – 1080 of 3997

Showing per page

Generalized canonical algebras and standard stable tubes

Andrzej Skowroński (2001)

Colloquium Mathematicae

We introduce a new wide class of finite-dimensional algebras which admit families of standard stable tubes (in the sense of Ringel [17]). In particular, we prove that there are many algebras of arbitrary nonzero (finite or infinite) global dimension whose Auslander-Reiten quivers admit faithful standard stable tubes.

Generalized derivations associated with Hochschild 2-cocycles on some algebras

Jiankui Li, Jiren Zhou (2010)

Czechoslovak Mathematical Journal

We investigate a new type of generalized derivations associated with Hochschild 2-cocycles which was introduced by A. Nakajima. We show that every generalized Jordan derivation of this type from CSL algebras or von Neumann algebras into themselves is a generalized derivation under some reasonable conditions. We also study generalized derivable mappings at zero point associated with Hochschild 2-cocycles on CSL algebras.

Generalized derivations on Lie ideals in prime rings

Basudeb Dhara, Sukhendu Kar, Sachhidananda Mondal (2015)

Czechoslovak Mathematical Journal

Let R be a prime ring with its Utumi ring of quotients U and extended centroid C . Suppose that F is a generalized derivation of R and L is a noncentral Lie ideal of R such that F ( u ) [ F ( u ) , u ] n = 0 for all u L , where n 1 is a fixed integer. Then one of the following holds: ...

Generalized derivations with power values on rings and Banach algebras

Abderrahman Hermas, Abdellah Mamouni, Lahcen Oukhtite (2024)

Mathematica Bohemica

Let R be a prime ring and I a nonzero ideal of R . The purpose of this paper is to classify generalized derivations of R satisfying some algebraic identities with power values on I . More precisely, we consider two generalized derivations F and H of R satisfying one of the following identities: ...

Generalized E-algebras via λ-calculus I

Rüdiger Göbel, Saharon Shelah (2006)

Fundamenta Mathematicae

An R-algebra A is called an E(R)-algebra if the canonical homomorphism from A to the endomorphism algebra E n d R A of the R-module R A , taking any a ∈ A to the right multiplication a r E n d R A by a, is an isomorphism of algebras. In this case R A is called an E(R)-module. There is a proper class of examples constructed in [4]. E(R)-algebras arise naturally in various topics of algebra. So it is not surprising that they were investigated thoroughly in the last decades; see [3, 5, 7, 8, 10, 13, 14, 15, 18, 19]. Despite...

Currently displaying 1061 – 1080 of 3997