Displaying 41 – 60 of 90

Showing per page

Some results on quasi-Frobenius rings

Zhanmin Zhu (2017)

Commentationes Mathematicae Universitatis Carolinae

We give some new characterizations of quasi-Frobenius rings by the generalized injectivity of rings. Some characterizations give affirmative answers to some open questions about quasi-Frobenius rings; and some characterizations improve some results on quasi-Frobenius rings.

Some results on quasi-t-dual Baer modules

Rachid Tribak, Yahya Talebi, Mehrab Hosseinpour (2023)

Commentationes Mathematicae Universitatis Carolinae

Let R be a ring and let M be an R -module with S = End R ( M ) . Consider the preradical Z ¯ for the category of right R -modules Mod- R introduced by Y. Talebi and N. Vanaja in 2002 and defined by Z ¯ ( M ) = { U M : M / U is small in its injective hull } . The module M is called quasi-t-dual Baer if ϕ ϕ ( Z ¯ 2 ( M ) ) is a direct summand of M for every two-sided ideal of S , where Z ¯ 2 ( M ) = Z ¯ ( Z ¯ ( M ) ) . In this paper, we show that M is quasi-t-dual Baer if and only if Z ¯ 2 ( M ) is a direct summand of M and Z ¯ 2 ( M ) is a quasi-dual Baer module. It is also shown that any direct summand of a...

Some results on the co-intersection graph of submodules of a module

Lotf Ali Mahdavi, Yahya Talebi (2018)

Commentationes Mathematicae Universitatis Carolinae

Let R be a ring with identity and M be a unitary left R -module. The co-intersection graph of proper submodules of M , denoted by Ω ( M ) , is an undirected simple graph whose vertex set V ( Ω ) is a set of all nontrivial submodules of M and two distinct vertices N and K are adjacent if and only if N + K M . We study the connectivity, the core and the clique number of Ω ( M ) . Also, we provide some conditions on the module M , under which the clique number of Ω ( M ) is infinite and Ω ( M ) is a planar graph. Moreover, we give several...

Split-null extensions of strongly right bounded rings.

Gary F. Birkenmeier (1990)

Publicacions Matemàtiques

A ring is said to be strongly right bounded if every nonzero right ideal contains a nonzero ideal. In this paper strongly right bounded rings are characterized, conditions are determined which ensure that the split-null (or trivial) extension of a ring is strongly right bounded, and we characterize strongly right bounded right quasi-continuous split-null extensions of a left faithful ideal over a semiprime ring. This last result partially generalizes a result of C. Faith concerning split-null extensions...

Standardly stratified split and lower triangular algebras

Eduardo do N. Marcos, Hector A. Merklen, Corina Sáenz (2002)

Colloquium Mathematicae

In the first part, we study algebras A such that A = R ⨿ I, where R is a subalgebra and I a two-sided nilpotent ideal. Under certain conditions on I, we show that A is standardly stratified if and only if R is standardly stratified. Next, for A = U 0 M V , we show that A is standardly stratified if and only if the algebra R = U × V is standardly stratified and V M is a good V-module.

Strict Mittag-Leffler conditions and locally split morphisms

Yanjiong Yang, Xiaoguang Yan (2018)

Czechoslovak Mathematical Journal

In this paper, we prove that any pure submodule of a strict Mittag-Leffler module is a locally split submodule. As applications, we discuss some relations between locally split monomorphisms and locally split epimorphisms and give a partial answer to the open problem whether Gorenstein projective modules are Ding projective.

Strong no-loop conjecture for algebras with two simples and radical cube zero

Bernt T. Jensen (2005)

Colloquium Mathematicae

Let Λ be an artinian ring and let 𝔯 denote its Jacobson radical. We show that a simple module of finite projective dimension has no self-extensions when Λ is graded by its radical, with at most two simple modules and 𝔯⁴ = 0, in particular, when Λ is a finite-dimensional algebra over an algebraically closed field with at most two simple modules and 𝔯³ = 0.

Strong separativity over exchange rings

Huanyin Chen (2008)

Czechoslovak Mathematical Journal

An exchange ring R is strongly separative provided that for all finitely generated projective right R -modules A and B , A A A B A B . We prove that an exchange ring R is strongly separative if and only if for any corner S of R , a S + b S = S implies that there exist u , v S such that a u = b v and S u + S v = S if and only if for any corner S of R , a S + b S = S implies that there exists a right invertible matrix a b * M 2 ( S ) . The dual assertions are also proved.

Currently displaying 41 – 60 of 90