Page 1 Next

Displaying 1 – 20 of 74

Showing per page

A class of quasitilted rings that are not tilted

Riccardo Colpi, Kent R. Fuller, Enrico Gregorio (2006)

Colloquium Mathematicae

Based on the work of D. Happel, I. Reiten and S. Smalø on quasitilted artin algebras, the first two authors recently introduced the notion of quasitilted rings. Various authors have presented examples of quasitilted artin algebras that are not tilted. Here we present a class of right quasitilted rings that not right tilted, and we show that they satisfy a condition that would force a quasitilted artin algebra to be tilted.

A formula for topology/deformations and its significance

Ruth Lawrence, Dennis Sullivan (2014)

Fundamenta Mathematicae

The formula is e = ( a d e ) b + i = 0 ( B i ) / i ! ( a d e ) i ( b - a ) , with ∂a + 1/2 [a,a] = 0 and ∂b + 1/2 [b,b] = 0, where a, b and e in degrees -1, -1 and 0 are the free generators of a completed free graded Lie algebra L[a,b,e]. The coefficients are defined by x / ( e x - 1 ) = n = 0 B / n ! x . The theorem is that ∙ this formula for ∂ on generators extends to a derivation of square zero on L[a,b,e]; ∙ the formula for ∂e is unique satisfying the first property, once given the formulae for ∂a and ∂b, along with the condition that the “flow” generated by e moves a to b in unit...

A generalization of the Auslander transpose and the generalized Gorenstein dimension

Yuxian Geng (2013)

Czechoslovak Mathematical Journal

Let R be a left and right Noetherian ring and C a semidualizing R -bimodule. We introduce a transpose Tr c M of an R -module M with respect to C which unifies the Auslander transpose and Huang’s transpose, see Z. Y. Huang, On a generalization of the Auslander-Bridger transpose, Comm. Algebra 27 (1999), 5791–5812, in the two-sided Noetherian setting, and use Tr c M to develop further the generalized Gorenstein dimension with respect to C . Especially, we generalize the Auslander-Bridger formula to the generalized...

A Künneth formula in topological homology and its applications to the simplicial cohomology of ¹ ( k )

F. Gourdeau, Z. A. Lykova, M. C. White (2005)

Studia Mathematica

We establish a Künneth formula for some chain complexes in the categories of Fréchet and Banach spaces. We consider a complex of Banach spaces and continuous boundary maps dₙ with closed ranges and prove that Hⁿ(’) ≅ Hₙ()’, where Hₙ()’ is the dual space of the homology group of and Hⁿ(’) is the cohomology group of the dual complex ’. A Künneth formula for chain complexes of nuclear Fréchet spaces and continuous boundary maps with closed ranges is also obtained. This enables us to describe explicitly...

A minimal regular ring extension of C(X)

M. Henriksen, R. Raphael, R. G. Woods (2002)

Fundamenta Mathematicae

Let G(X) denote the smallest (von Neumann) regular ring of real-valued functions with domain X that contains C(X), the ring of continuous real-valued functions on a Tikhonov topological space (X,τ). We investigate when G(X) coincides with the ring C ( X , τ δ ) of continuous real-valued functions on the space ( X , τ δ ) , where τ δ is the smallest Tikhonov topology on X for which τ τ δ and C ( X , τ δ ) is von Neumann regular. The compact and metric spaces for which G ( X ) = C ( X , τ δ ) are characterized. Necessary, and different sufficient, conditions...

A non-abelian tensor product of Leibniz algebra

Allahtan Victor Gnedbaye (1999)

Annales de l'institut Fourier

Leibniz algebras are a non-commutative version of usual Lie algebras. We introduce a notion of (pre)crossed Leibniz algebra which is a simultaneous generalization of notions of representation and two-sided ideal of a Leibniz algebra. We construct the Leibniz algebra of biderivations on crossed Leibniz algebras and we define a non-abelian tensor product of Leibniz algebras. These two notions are adjoint to each other. A (co)homological characterization of these new algebraic objects enables us to...

Currently displaying 1 – 20 of 74

Page 1 Next