Displaying 41 – 60 of 83

Showing per page

Some remarks on the Akivis algebras and the Pre-Lie algebras

Yuqun Chen, Yu Li (2011)

Czechoslovak Mathematical Journal

In this paper, by using the Composition-Diamond lemma for non-associative algebras invented by A. I. Shirshov in 1962, we give Gröbner-Shirshov bases for free Pre-Lie algebras and the universal enveloping non-associative algebra of an Akivis algebra, respectively. As applications, we show I. P. Shestakov’s result that any Akivis algebra is linear and D. Segal’s result that the set of all good words in X * * forms a linear basis of the free Pre-Lie algebra PLie ( X ) generated by the set X . For completeness,...

Spinors in braided geometry

Mićo Đurđević, Zbigniew Oziewicz (1996)

Banach Center Publications

Let V be a ℂ-space, σ E n d ( V 2 ) be a pre-braid operator and let F l i n ( V 2 , ) . This paper offers a sufficient condition on (σ,F) that there exists a Clifford algebra Cl(V,σ,F) as the Chevalley F-dependent deformation of an exterior algebra C l ( V , σ , 0 ) V ( σ ) . If σ σ - 1 and F is non-degenerate then F is not a σ-morphism in σ-braided monoidal category. A spinor representation as a left Cl(V,σ,F)-module is identified with an exterior algebra over F-isotropic ℂ-subspace of V. We give a sufficient condition on braid σ that the spinor representation...

Split-null extensions of strongly right bounded rings.

Gary F. Birkenmeier (1990)

Publicacions Matemàtiques

A ring is said to be strongly right bounded if every nonzero right ideal contains a nonzero ideal. In this paper strongly right bounded rings are characterized, conditions are determined which ensure that the split-null (or trivial) extension of a ring is strongly right bounded, and we characterize strongly right bounded right quasi-continuous split-null extensions of a left faithful ideal over a semiprime ring. This last result partially generalizes a result of C. Faith concerning split-null extensions...

Stratified modules over an extension algebra

Erzsébet Lukács, András Magyar (2018)

Czechoslovak Mathematical Journal

Let A be a standard Koszul standardly stratified algebra and X an A -module. The paper investigates conditions which imply that the module Ext A * ( X ) over the Yoneda extension algebra A * is filtered by standard modules. In particular, we prove that the Yoneda extension algebra of A is also standardly stratified. This is a generalization of similar results on quasi-hereditary and on graded standardly stratified algebras.

Strongly graded left FTF rings.

José Gómez, Blas Torrecillas (1992)

Publicacions Matemàtiques

An associated ring R with identity is said to be a left FTF ring when the class of the submodules of flat left R-modules is closed under injective hulls and direct products. We prove (Theorem 3.5) that a strongly graded ring R by a locally finite group G is FTF if and only if Re is left FTF, where e is a neutral element of G. This provides new examples of left FTF rings. Some consequences of this Theorem are given.

Strongly groupoid graded rings and cohomology

Patrik Lundström (2006)

Colloquium Mathematicae

We interpret the collection of invertible bimodules as a groupoid and call it the Picard groupoid. We use this groupoid to generalize the classical construction of crossed products to what we call groupoid crossed products, and show that these coincide with the class of strongly groupoid graded rings. We then use groupoid crossed products to obtain a generalization from the group graded situation to the groupoid graded case of the bijection from a second cohomology group, defined by the grading...

Structure of the Unit Group of FD10

Khan, Manju (2009)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 16U60, 20C05.The structure of the unit group of the group algebra FD10 of the dihedral group D10 of order 10 over a finite field F has been obtained.Supported by National Board of Higher Mathematics, DAE, India.

Structure theory for the group algebra of the symmetric group, with applications to polynomial identities for the octonions

Murray R. Bremner, Sara Madariaga, Luiz A. Peresi (2016)

Commentationes Mathematicae Universitatis Carolinae

This is a survey paper on applications of the representation theory of the symmetric group to the theory of polynomial identities for associative and nonassociative algebras. In §1, we present a detailed review (with complete proofs) of the classical structure theory of the group algebra 𝔽 S n of the symmetric group S n over a field 𝔽 of characteristic 0 (or p > n ). The goal is to obtain a constructive version of the isomorphism ψ : λ M d λ ( 𝔽 ) 𝔽 S n where λ is a partition of n and d λ counts the standard tableaux of shape λ ....

Currently displaying 41 – 60 of 83