Displaying 321 – 340 of 2671

Showing per page

Classification of irreducible weight modules

Olivier Mathieu (2000)

Annales de l'institut Fourier

Let 𝔤 be a reductive Lie algebra and let 𝔥 be a Cartan subalgebra. A 𝔤 -module M is called a weighted module if and only if M = λ M λ , where each weight space M λ is finite dimensional. The main result of the paper is the classification of all simple weight 𝔤 -modules. Further, we show that their characters can be deduced from characters of simple modules in category 𝒪 .

Classification of p-adic 6-dimensional filiform Leibniz algebras by solutions of x q = a

Manuel Ladra, Bakhrom Omirov, Utkir Rozikov (2013)

Open Mathematics

We study the p-adic equation x q = a over the field of p-adic numbers. We construct an algorithm which gives a solvability criteria in the case of q = p m and present a computer program to compute the criteria for any fixed value of m ≤ p − 1. Moreover, using this solvability criteria for q = 2; 3; 4; 5; 6, we classify p-adic 6-dimensional filiform Leibniz algebras.

Clifford approach to metric manifolds

Chisholm, J. S. R., Farwell, R. S. (1991)

Proceedings of the Winter School "Geometry and Physics"

[For the entire collection see Zbl 0742.00067.]For the purpose of providing a comprehensive model for the physical world, the authors set up the notion of a Clifford manifold which, as mentioned below, admits the usual tensor structure and at the same time a spin structure. One considers the spin space generated by a Clifford algebra, namely, the vector space spanned by an orthonormal basis { e j : j = 1 , , n } satisfying the condition { e i , e j } e i e j = e j e i = 2 I η i j , where I denotes the unit scalar of the algebra and ( η i j ) the nonsingular Minkowski...

Coalgebraic Approach to the Loday Infinity Category, Stem Differential for 2 n -ary Graded and Homotopy Algebras

Mourad Ammar, Norbert Poncin (2010)

Annales de l’institut Fourier

We define a graded twisted-coassociative coproduct on the tensor algebra the desuspension space of a graded vector space V . The coderivations (resp. quadratic “degree 1” codifferentials, arbitrary odd codifferentials) of this coalgebra are 1-to-1 with sequences of multilinear maps on V (resp. graded Loday structures on V , sequences that we call Loday infinity structures on V ). We prove a minimal model theorem for Loday infinity algebras and observe that the Lod category contains the L category as...

Cohomologie des algèbres de Lie croisées et K -théorie de Milnor additive

Daniel Guin (1995)

Annales de l'institut Fourier

Dans cet article, nous définissons des modules de (co)-homologie 0 ( 𝔊 , 𝔄 ) , 1 ( 𝔊 , 𝔄 ) , ( 𝔊 , 𝔄 ) , 1 ( 𝔊 , 𝔄 ) 𝔊 et 𝔄 sont des algèbres de Lie munies d’une structure supplémentaire (algèbres de Lie croisées), qui satisfont les propriétés usuelles des foncteurs cohomologiques. Si A est une k -algèbre, nous utilisons ces modules d’homologie pour comparer le groupe d’homologie cyclique H C 1 ( A ) avec un analogue additif du groupe de K -théorie de Milnor K 2 Madd ( A ) .

Currently displaying 321 – 340 of 2671