Displaying 1281 – 1300 of 2676

Showing per page

On the K -theory and Hattori-Stallings traces of minimal primitive factors of enveloping algebras of semisimple Lie algebras : the singular case

Patrick Polo (1995)

Annales de l'institut Fourier

Let G be a semisimple complex algebraic group and X its flag variety. Let 𝔤 = Lie ( G ) and let U be its enveloping algebra. Let 𝔥 be a Cartan subalgebra of 𝔤 . For μ 𝔥 * , let J μ be the corresponding minimal primitive ideal, let U μ = U / J μ , and let 𝒯 U μ : K 0 ( U m u ) be the Hattori-Stallings trace. Results of Hodges suggest to study this map as a step towards a classification, up to isomorphism or Morita equivalence, of the -algebras U μ . When μ is regular, Hodges has shown that K 0 ( U μ ) K 0 ( X ) . In this case K 0 ( U μ ) is generated by the classes corresponding to...

On the Lebesgue decomposition of the normal states of a JBW-algebra

Jacques Dubois, Brahim Hadjou (1992)

Mathematica Bohemica

In this article, a theorem is proved asserting that any linear functional defined on a JBW-algebra admits a Lebesque decomposition with respect to any normal state defined on the algebra. Then we show that the positivity (and the unicity) of this decomposition is insured for the trace states defined on the algebra. In fact, this property can be used to give a new characterization of the trace states amoungst all the normal states.

On the nilpotent residuals of all subalgebras of Lie algebras

Wei Meng, Hailou Yao (2018)

Czechoslovak Mathematical Journal

Let 𝒩 denote the class of nilpotent Lie algebras. For any finite-dimensional Lie algebra L over an arbitrary field 𝔽 , there exists a smallest ideal I of L such that L / I 𝒩 . This uniquely determined ideal of L is called the nilpotent residual of L and is denoted by L 𝒩 . In this paper, we define the subalgebra S ( L ) = H L I L ( H 𝒩 ) . Set S 0 ( L ) = 0 . Define S i + 1 ( L ) / S i ( L ) = S ( L / S i ( L ) ) for i 1 . By S ( L ) denote the terminal term of the ascending series. It is proved that L = S ( L ) if and only if L 𝒩 is nilpotent. In addition, we investigate the basic properties of a Lie algebra...

On the q-exponential of matrix q-Lie algebras

Thomas Ernst (2017)

Special Matrices

In this paper, we define several new concepts in the borderline between linear algebra, Lie groups and q-calculus.We first introduce the ring epimorphism r, the set of all inversions of the basis q, and then the important q-determinant and corresponding q-scalar products from an earlier paper. Then we discuss matrix q-Lie algebras with a modified q-addition, and compute the matrix q-exponential to form the corresponding n × n matrix, a so-called q-Lie group, or manifold, usually with q-determinant...

Currently displaying 1281 – 1300 of 2676