Displaying 41 – 60 of 117

Showing per page

Malcev-Moduln.

Renate Carlsson (1976)

Journal für die reine und angewandte Mathematik

Maximal solvable extensions of filiform algebras

Libor Šnobl (2011)

Archivum Mathematicum

It is already known that any filiform Lie algebra which possesses a codimension 2 solvable extension is naturally graded. Here we present an alternative derivation of this result.

On the nilpotent residuals of all subalgebras of Lie algebras

Wei Meng, Hailou Yao (2018)

Czechoslovak Mathematical Journal

Let 𝒩 denote the class of nilpotent Lie algebras. For any finite-dimensional Lie algebra L over an arbitrary field 𝔽 , there exists a smallest ideal I of L such that L / I 𝒩 . This uniquely determined ideal of L is called the nilpotent residual of L and is denoted by L 𝒩 . In this paper, we define the subalgebra S ( L ) = H L I L ( H 𝒩 ) . Set S 0 ( L ) = 0 . Define S i + 1 ( L ) / S i ( L ) = S ( L / S i ( L ) ) for i 1 . By S ( L ) denote the terminal term of the ascending series. It is proved that L = S ( L ) if and only if L 𝒩 is nilpotent. In addition, we investigate the basic properties of a Lie algebra...

Propriétés (Q) et (C). Variété commutante

Jean-Yves Charbonnel (2004)

Bulletin de la Société Mathématique de France

Soient X une variété algébrique complexe, lisse, irréductible, E et F deux espaces vectoriels complexes de dimension finie et μ un morphisme de X dans l’espace Lin ( E , F ) des applications linéaires de E dans F . Pour x X , on note E ( x ) et x · E le noyau et l’image de μ ( x ) , μ ¯ x le morphisme de X dans Lin ( E ( x ) , F / ( x · E ) ) qui associe à y l’application linéaire v μ ( y ) ( v ) + x · E . Soit i μ la dimension minimale de E ( x ) . On dit que μ ala propriété ( 𝐑 ) en x si i μ ¯ x est inférieur à i μ . Soient F * le dual de F , S ( F ) l’algèbre symétrique de F , μ l’idéal de 𝒪 X S ( F ) engendré par...

Quasi-trace functions on Lie algebras and their applications to 3-Lie algebras

Youjun Tan, Senrong Xu (2022)

Czechoslovak Mathematical Journal

We introduce the notion of quasi-trace functions on Lie algebras. As applications we study realizations of 3-dimensional and 4-dimensional 3-Lie algebras. Some comparison results on cohomologies of 3-Lie algebras and Leibniz algebras arising from quasi-trace functions are obtained.

Currently displaying 41 – 60 of 117