Displaying 61 – 80 of 246

Showing per page

Explicit representations of classical Lie superalgebras in a Gelfand-Zetlin basis

N. I. Stoilova, J. Van der Jeugt (2011)

Banach Center Publications

An explicit construction of all finite-dimensional irreducible representations of classical Lie algebras is a solved problem and a Gelfand-Zetlin type basis is known. However the latter lacks the orthogonality property or does not consist of weight vectors for 𝔰𝔬(n) and 𝔰𝔭(2n). In case of Lie superalgebras all finite-dimensional irreducible representations are constructed explicitly only for 𝔤𝔩(1|n), 𝔤𝔩(2|2), 𝔬𝔰𝔭(3|2) and for the so called essentially typical representations of 𝔤𝔩(m|n)....

Generalised Jantzen filtration of Lie superalgebras I

Yucai Su, R. B. Zhang (2012)

Journal of the European Mathematical Society

A Jantzen type filtration for generalised Verma modules of Lie superalgebras is introduced. In the case of type I Lie superalgebras, it is shown that the generalised Jantzen filtration for any Kac module is the unique Loewy filtration, and the decomposition numbers of the layers of the filtration are determined by the coefficients of inverse Kazhdan–Lusztig polynomials. Furthermore, the length of the Jantzen filtration for any Kac module is determined explicitly in terms of the degree of atypicality...

Generalized Verma module homomorphisms in singular character

Peter Franek (2006)

Archivum Mathematicum

In this paper we study invariant differential operators on manifolds with a given parabolic structure. The model for the parabolic geometry is the quotient of the orthogonal group by a maximal parabolic subgroup corresponding to crossing of the k -th simple root of the Dynkin diagram. In particular, invariant differential operators discussed in the paper correspond (in a flat model) to the Dirac operator in several variables.

Groupe de Galois différentiel local et représentation adjointe

Elie Compoint, Anne Duval (2007)

Annales de la faculté des sciences de Toulouse Mathématiques

Dans cet article on s’intéresse à la représentation adjointe du tore exponentiel sur l’algèbre de Lie du groupe de Galois différentiel local. Nous proposons un algorithme pour réduire les sous-espaces poids de dimension supérieure à 1 à des sous-espaces de racines. Ce faisant, on construit un tore (en général) maximal qui contient le tore exponentiel. Au cours de ce travail on est amené à étudier la régularité du tore exponentiel dans le groupe de Galois local.

Currently displaying 61 – 80 of 246