Displaying 161 – 180 of 226

Showing per page

Sur l'indice de certaines algèbres de Lie

Patrice Tauvel, Rupert W.T. Yu (2004)

Annales de l’institut Fourier

On donne une majoration de l'indice de certaines algèbres de Lie introduites par V. Dergachev, A. Kirillov et D. Panyushev. On en déduit la preuve d'une conjecture de D. Panyushev. Nous formulons aussi une conjecture concernant l'indice de ces algèbres, et la prouvons dans des cas particuliers. Enfin, nous donnons un résultat concernant l'indice des sous-algèbres paraboliques d'une algèbre de Lie semi-simple.

The groups of automorphisms of the Witt W n and Virasoro Lie algebras

Vladimir V. Bavula (2016)

Czechoslovak Mathematical Journal

Let L n = K [ x 1 ± 1 , ... , x n ± 1 ] be a Laurent polynomial algebra over a field K of characteristic zero, W n : = Der K ( L n ) the Lie algebra of K -derivations of the algebra L n , the so-called Witt Lie algebra, and let Vir be the Virasoro Lie algebra which is a 1 -dimensional central extension of the Witt Lie algebra. The Lie algebras W n and Vir are infinite dimensional Lie algebras. We prove that the following isomorphisms of the groups of Lie algebra automorphisms hold: Aut Lie ( Vir ) Aut Lie ( W 1 ) { ± 1 } K * , and give a short proof that Aut Lie ( W n ) Aut K - alg ( L n ) GL n ( ) K * n .

The Hurwitz determinants and the signatures of irreducible representations of simple real Lie algebras

Alexander Rudy (2005)

Open Mathematics

The paper deals with the real classical Lie algebras and their finite dimensional irreducible representations. Signature formulae for Hermitian forms invariant relative to these representations are considered. It is possible to associate with the irreducible representation a Hurwitz matrix of special kind. So the calculation of the signatures is reduced to the calculation of Hurwitz determinants. Hence it is possible to use the Routh algorithm for the calculation.

Currently displaying 161 – 180 of 226